mmpose/tools/dataset_converters/wflw2coco.py

119 lines
3.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import json
import math
import os
import os.path as osp
import cv2
import numpy as np
def default_dump(obj):
"""Convert numpy classes to JSON serializable objects."""
if isinstance(obj, (np.integer, np.floating, np.bool_)):
return obj.item()
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj
def convert_wflw_to_coco(ann_file, out_file):
annotations = []
images = []
files = []
cnt = 0
image_cnt = 0
data_infos = open(ann_file).readlines()
data_infos = [x.strip().split() for x in data_infos]
for data in data_infos:
file_name = data[-1]
img_path = osp.join('data/wflw/WFLW_images', file_name)
img = cv2.imread(img_path)
keypoints = []
coordinates = [data[i:i + 2] for i in range(0, 196, 2)]
for coordinate in coordinates:
x, y = coordinate[0], coordinate[1]
x, y = float(x), float(y)
keypoints.append([x, y, 1])
keypoints = np.array(keypoints)
x1, y1, _ = np.amin(keypoints, axis=0)
x2, y2, _ = np.amax(keypoints, axis=0)
w, h = x2 - x1, y2 - y1
scale = math.ceil(max(w, h)) / 200
w_new = w / scale
h_new = h / scale
center = [(x1 + x2) / 2, (y1 + y2) / 2]
x1_new = center[0] - w_new / 2
y1_new = center[1] - h_new / 2
bbox = [x1_new, y1_new, w_new, h_new]
image = {}
# check if the image already exists
if file_name in files:
image = images[files.index(file_name)]
else:
image['id'] = image_cnt
image['file_name'] = f'{file_name}'
image['height'] = img.shape[0]
image['width'] = img.shape[1]
image_cnt = image_cnt + 1
files.append(file_name)
images.append(image)
ann = {}
ann['keypoints'] = keypoints.reshape(-1).tolist()
ann['image_id'] = image['id']
ann['id'] = cnt
ann['num_keypoints'] = len(keypoints)
ann['bbox'] = bbox
ann['is_crowd'] = 0
ann['area'] = w * h
ann['category_id'] = 1
ann['center'] = center
ann['scale'] = scale
annotations.append(ann)
cnt = cnt + 1
cocotype = {}
cocotype['images'] = images
cocotype['annotations'] = annotations
cocotype['categories'] = [{
'supercategory': 'person',
'id': 1,
'name': 'face',
'keypoints': [],
'skeleton': []
}]
json.dump(
cocotype,
open(out_file, 'w'),
ensure_ascii=False,
default=default_dump)
print(f'done {out_file}')
if __name__ == '__main__':
if not osp.exists('data/wflw/annotations'):
os.makedirs('data/wflw/annotations')
root_folder = 'data/wflw'
ann_folder = f'{root_folder}/WFLW_annotations'
for root, dirs, files in os.walk(ann_folder):
for file in files:
if not file.endswith('txt'):
continue
print(f'Processing {file}')
sub_class = file.split('_')[-1].replace('.txt', '')
if sub_class != 'train' and sub_class != 'test':
out_file = f'face_landmarks_wflw_test_{sub_class}.json'
else:
out_file = f'face_landmarks_wflw_{sub_class}.json'
convert_wflw_to_coco(f'{root}/{file}',
f'{root_folder}/annotations/{out_file}')