mmpose/tools/dataset_converters/lapa2coco.py

112 lines
3.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import json
import os
import os.path as osp
import time
import cv2
import mmengine
import numpy as np
def default_dump(obj):
"""Convert numpy classes to JSON serializable objects."""
if isinstance(obj, (np.integer, np.floating, np.bool_)):
return obj.item()
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj
def convert_labpa_to_coco(ann_dir, out_file):
annotations = []
images = []
cnt = 0
if 'trainval' in ann_dir:
ann_dir_list = ['train', 'val']
else:
ann_dir_list = [ann_dir]
for tv in ann_dir_list:
ann_dir = 'data/LaPa/' + tv
landmark_dir = osp.join(ann_dir, 'landmarks')
ann_list = os.listdir(landmark_dir)
img_dir = osp.join(ann_dir, 'images')
for idx, ann_file in enumerate(mmengine.track_iter_progress(ann_list)):
cnt += 1
ann_path = osp.join(landmark_dir, ann_file)
file_name = ann_file[:-4] + '.jpg'
img_path = osp.join(img_dir, file_name)
data_info = open(ann_path).readlines()
img = cv2.imread(img_path)
keypoints = []
for line in data_info[1:]:
x, y = line.strip().split(' ')
x, y = float(x), float(y)
keypoints.append([x, y, 2])
keypoints = np.array(keypoints)
x1, y1, _ = np.amin(keypoints, axis=0)
x2, y2, _ = np.amax(keypoints, axis=0)
w, h = x2 - x1, y2 - y1
bbox = [x1, y1, w, h]
image = {}
image['id'] = cnt
image['file_name'] = f'{tv}/images/{file_name}'
image['height'] = img.shape[0]
image['width'] = img.shape[1]
images.append(image)
ann = {}
ann['keypoints'] = keypoints.reshape(-1).tolist()
ann['image_id'] = cnt
ann['id'] = cnt
ann['num_keypoints'] = len(keypoints)
ann['bbox'] = bbox
ann['iscrowd'] = 0
ann['area'] = int(ann['bbox'][2] * ann['bbox'][3])
ann['category_id'] = 1
annotations.append(ann)
cocotype = {}
cocotype['info'] = {}
cocotype['info']['description'] = 'LaPa Generated by MMPose Team'
cocotype['info']['version'] = 1.0
cocotype['info']['year'] = time.strftime('%Y', time.localtime())
cocotype['info']['date_created'] = time.strftime('%Y/%m/%d',
time.localtime())
cocotype['images'] = images
cocotype['annotations'] = annotations
cocotype['categories'] = [{
'supercategory': 'person',
'id': 1,
'name': 'face',
'keypoints': [],
'skeleton': []
}]
json.dump(
cocotype,
open(out_file, 'w'),
ensure_ascii=False,
default=default_dump)
print(f'done {out_file}')
if __name__ == '__main__':
if not osp.exists('data/LaPa/annotations'):
os.makedirs('data/LaPa/annotations')
for tv in ['val', 'test', 'train', 'trainval']:
print(f'processing {tv}')
convert_labpa_to_coco(tv, f'data/LaPa/annotations/lapa_{tv}.json')