mmpose/tools/dataset_converters/300wlp2coco.py

172 lines
5.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import json
import os
import os.path as osp
import shutil
import time
import cv2
import numpy as np
from scipy.io import loadmat
# Move all images to one folder
def move_img(img_path, save_img):
path_list = ['AFW', 'HELEN', 'IBUG', 'LFPW']
# 保存路径
if not os.path.isdir(save_img):
os.makedirs(save_img)
for people_name in path_list:
# 读取文件夹中图片
Image_dir = os.path.join(img_path, people_name)
img_list = os.listdir(Image_dir)
for img_name in img_list:
if 'jpg' in img_name:
old_img_path = Image_dir + '/' + img_name
shutil.move(old_img_path, save_img + '/' + img_name)
# split 300w-lp data
def split_data(file_img,
train_path,
val_path,
test_path,
shuffle=True,
ratio1=0.8,
ratio2=0.1):
img_list = os.listdir(file_img)
if shuffle:
np.random.shuffle(img_list)
n_total = len(img_list)
offset_train = int(n_total * ratio1)
offset_val = int(n_total * ratio2) + offset_train
train_img = img_list[:offset_train]
val_img = img_list[offset_train:offset_val]
test_img = img_list[offset_val:]
for img in train_img:
shutil.move(file_img + '/' + img, train_path + '/' + img)
for img in val_img:
shutil.move(file_img + '/' + img, val_path + '/' + img)
for img in test_img:
shutil.move(file_img + '/' + img, test_path + '/' + img)
def default_dump(obj):
"""Convert numpy classes to JSON serializable objects."""
if isinstance(obj, (np.integer, np.floating, np.bool_)):
return obj.item()
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj
def convert_300WLP_to_coco(root_path, img_pathDir, out_file):
annotations = []
images = []
cnt = 0
if 'trainval' in img_pathDir:
img_dir_list = ['train', 'val']
else:
img_dir_list = [img_pathDir]
for tv in img_dir_list:
img_dir = osp.join(root_path, tv)
landmark_dir = os.path.join(root_path, '300W_LP', 'landmarks')
img_list = os.listdir(img_dir)
for idx, img_name in enumerate(img_list):
cnt += 1
img_path = osp.join(img_dir, img_name)
type_name = img_name.split('_')[0]
ann_name = img_name.split('.')[0] + '_pts.mat'
ann_path = osp.join(landmark_dir, type_name, ann_name)
data_info = loadmat(ann_path)
img = cv2.imread(img_path)
keypoints = data_info['pts_2d']
keypoints_all = []
for i in range(keypoints.shape[0]):
x, y = keypoints[i][0], keypoints[i][1]
keypoints_all.append([x, y, 2])
keypoints = np.array(keypoints_all)
x1, y1, _ = np.amin(keypoints, axis=0)
x2, y2, _ = np.amax(keypoints, axis=0)
w, h = x2 - x1, y2 - y1
bbox = [x1, y1, w, h]
image = {}
image['id'] = cnt
image['file_name'] = img_name
image['height'] = img.shape[0]
image['width'] = img.shape[1]
images.append(image)
ann = {}
ann['keypoints'] = keypoints.reshape(-1).tolist()
ann['image_id'] = cnt
ann['id'] = cnt
ann['num_keypoints'] = len(keypoints)
ann['bbox'] = bbox
ann['iscrowd'] = 0
ann['area'] = int(ann['bbox'][2] * ann['bbox'][3])
ann['category_id'] = 1
annotations.append(ann)
cocotype = {}
cocotype['info'] = {}
cocotype['info']['description'] = 'LaPa Generated by MMPose Team'
cocotype['info']['version'] = 1.0
cocotype['info']['year'] = time.strftime('%Y', time.localtime())
cocotype['info']['date_created'] = time.strftime('%Y/%m/%d',
time.localtime())
cocotype['images'] = images
cocotype['annotations'] = annotations
cocotype['categories'] = [{
'supercategory': 'person',
'id': 1,
'name': 'face',
'keypoints': [],
'skeleton': []
}]
json.dump(
cocotype,
open(out_file, 'w'),
ensure_ascii=False,
default=default_dump)
print(f'done {out_file}')
if __name__ == '__main__':
# 1.Move all images to one folder
# 2.split 300W-LP data
# 3.convert json
img_path = './300W-LP/300W-LP'
save_img = './300W-LP/images'
move_img(img_path, save_img)
file_img = './300W-LP/images'
train_path = './300W-LP/train'
val_path = './300W-LP/val'
test_path = './300W-LP/test'
split_data(save_img, train_path, val_path, test_path)
root_path = './300W-LP'
anno_path_json = osp.join(root_path, 'annotations')
if not osp.exists(anno_path_json):
os.makedirs(anno_path_json)
for tv in ['val', 'test', 'train']:
print(f'processing {tv}')
convert_300WLP_to_coco(
root_path, tv,
anno_path_json + '/' + f'face_landmarks_300wlp_{tv}.json')