mmpose/tests/test_models/test_distillers/test_dwpose_distiller.py

114 lines
4.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import unittest
from unittest import TestCase
import torch
from mmengine.model.utils import revert_sync_batchnorm
from parameterized import parameterized
from mmpose.structures import PoseDataSample
from mmpose.testing import get_packed_inputs, get_pose_estimator_cfg
from mmpose.utils import register_all_modules
configs = [
'wholebody_2d_keypoint/dwpose/ubody/'
's1_dis/dwpose_l_dis_m_coco-ubody-256x192.py',
'wholebody_2d_keypoint/dwpose/ubody/'
's2_dis/dwpose_m-mm_coco-ubody-256x192.py',
'wholebody_2d_keypoint/dwpose/coco-wholebody/'
's1_dis/dwpose_l_dis_m_coco-256x192.py',
'wholebody_2d_keypoint/dwpose/coco-wholebody/'
's2_dis/dwpose_m-mm_coco-256x192.py',
]
configs_with_devices = [(config, ('cpu', 'cuda')) for config in configs]
class TestDWPoseDistiller(TestCase):
def setUp(self) -> None:
register_all_modules()
@parameterized.expand(configs)
def test_init(self, config):
dis_cfg = get_pose_estimator_cfg(config)
model_cfg = get_pose_estimator_cfg(dis_cfg.student_cfg)
model_cfg.backbone.init_cfg = None
from mmpose.models import build_pose_estimator
model = build_pose_estimator(model_cfg)
model = revert_sync_batchnorm(model)
self.assertTrue(model.backbone)
self.assertTrue(model.head)
if model_cfg.get('neck', None):
self.assertTrue(model.neck)
@parameterized.expand(configs_with_devices)
def test_forward_loss(self, config, devices):
dis_cfg = get_pose_estimator_cfg(config)
model_cfg = get_pose_estimator_cfg(dis_cfg.student_cfg)
model_cfg.backbone.init_cfg = None
from mmpose.models import build_pose_estimator
for device in devices:
model = build_pose_estimator(model_cfg)
model = revert_sync_batchnorm(model)
if device == 'cuda':
if not torch.cuda.is_available():
return unittest.skip('test requires GPU and torch+cuda')
model = model.cuda()
packed_inputs = get_packed_inputs(2, num_keypoints=133)
data = model.data_preprocessor(packed_inputs, training=True)
losses = model.forward(**data, mode='loss')
self.assertIsInstance(losses, dict)
@parameterized.expand(configs_with_devices)
def test_forward_predict(self, config, devices):
dis_cfg = get_pose_estimator_cfg(config)
model_cfg = get_pose_estimator_cfg(dis_cfg.student_cfg)
model_cfg.backbone.init_cfg = None
from mmpose.models import build_pose_estimator
for device in devices:
model = build_pose_estimator(model_cfg)
model = revert_sync_batchnorm(model)
if device == 'cuda':
if not torch.cuda.is_available():
return unittest.skip('test requires GPU and torch+cuda')
model = model.cuda()
packed_inputs = get_packed_inputs(2, num_keypoints=133)
model.eval()
with torch.no_grad():
data = model.data_preprocessor(packed_inputs, training=True)
batch_results = model.forward(**data, mode='predict')
self.assertEqual(len(batch_results), 2)
self.assertIsInstance(batch_results[0], PoseDataSample)
@parameterized.expand(configs_with_devices)
def test_forward_tensor(self, config, devices):
dis_cfg = get_pose_estimator_cfg(config)
model_cfg = get_pose_estimator_cfg(dis_cfg.student_cfg)
model_cfg.backbone.init_cfg = None
from mmpose.models import build_pose_estimator
for device in devices:
model = build_pose_estimator(model_cfg)
model = revert_sync_batchnorm(model)
if device == 'cuda':
if not torch.cuda.is_available():
return unittest.skip('test requires GPU and torch+cuda')
model = model.cuda()
packed_inputs = get_packed_inputs(2, num_keypoints=133)
data = model.data_preprocessor(packed_inputs, training=True)
batch_results = model.forward(**data, mode='tensor')
self.assertIsInstance(batch_results, (tuple, torch.Tensor))