mirror of https://github.com/open-mmlab/mmpose
347 lines
14 KiB
Python
347 lines
14 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from unittest import TestCase
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
|
|
|
|
from mmpose.models.backbones import ViPNAS_ResNet
|
|
from mmpose.models.backbones.vipnas_resnet import (ViPNAS_Bottleneck,
|
|
ViPNAS_ResLayer,
|
|
get_expansion)
|
|
|
|
|
|
class TestVipnasResnet(TestCase):
|
|
|
|
@staticmethod
|
|
def is_block(modules):
|
|
"""Check if is ViPNAS_ResNet building block."""
|
|
if isinstance(modules, (ViPNAS_Bottleneck)):
|
|
return True
|
|
return False
|
|
|
|
@staticmethod
|
|
def all_zeros(modules):
|
|
"""Check if the weight(and bias) is all zero."""
|
|
weight_zero = torch.equal(modules.weight.data,
|
|
torch.zeros_like(modules.weight.data))
|
|
if hasattr(modules, 'bias'):
|
|
bias_zero = torch.equal(modules.bias.data,
|
|
torch.zeros_like(modules.bias.data))
|
|
else:
|
|
bias_zero = True
|
|
|
|
return weight_zero and bias_zero
|
|
|
|
@staticmethod
|
|
def check_norm_state(modules, train_state):
|
|
"""Check if norm layer is in correct train state."""
|
|
for mod in modules:
|
|
if isinstance(mod, _BatchNorm):
|
|
if mod.training != train_state:
|
|
return False
|
|
return True
|
|
|
|
def test_get_expansion(self):
|
|
self.assertEqual(get_expansion(ViPNAS_Bottleneck, 2), 2)
|
|
self.assertEqual(get_expansion(ViPNAS_Bottleneck), 1)
|
|
|
|
class MyResBlock(nn.Module):
|
|
|
|
expansion = 8
|
|
|
|
self.assertEqual(get_expansion(MyResBlock), 8)
|
|
|
|
# expansion must be an integer or None
|
|
with self.assertRaises(TypeError):
|
|
get_expansion(ViPNAS_Bottleneck, '0')
|
|
|
|
# expansion is not specified and cannot be inferred
|
|
with self.assertRaises(TypeError):
|
|
|
|
class SomeModule(nn.Module):
|
|
pass
|
|
|
|
get_expansion(SomeModule)
|
|
|
|
def test_vipnas_bottleneck(self):
|
|
# style must be in ['pytorch', 'caffe']
|
|
with self.assertRaises(AssertionError):
|
|
ViPNAS_Bottleneck(64, 64, style='tensorflow')
|
|
|
|
# expansion must be divisible by out_channels
|
|
with self.assertRaises(AssertionError):
|
|
ViPNAS_Bottleneck(64, 64, expansion=3)
|
|
|
|
# Test ViPNAS_Bottleneck style
|
|
block = ViPNAS_Bottleneck(64, 64, stride=2, style='pytorch')
|
|
self.assertEqual(block.conv1.stride, (1, 1))
|
|
self.assertEqual(block.conv2.stride, (2, 2))
|
|
block = ViPNAS_Bottleneck(64, 64, stride=2, style='caffe')
|
|
self.assertEqual(block.conv1.stride, (2, 2))
|
|
self.assertEqual(block.conv2.stride, (1, 1))
|
|
|
|
# ViPNAS_Bottleneck with stride 1
|
|
block = ViPNAS_Bottleneck(64, 64, style='pytorch')
|
|
self.assertEqual(block.in_channels, 64)
|
|
self.assertEqual(block.mid_channels, 16)
|
|
self.assertEqual(block.out_channels, 64)
|
|
self.assertEqual(block.conv1.in_channels, 64)
|
|
self.assertEqual(block.conv1.out_channels, 16)
|
|
self.assertEqual(block.conv1.kernel_size, (1, 1))
|
|
self.assertEqual(block.conv2.in_channels, 16)
|
|
self.assertEqual(block.conv2.out_channels, 16)
|
|
self.assertEqual(block.conv2.kernel_size, (3, 3))
|
|
self.assertEqual(block.conv3.in_channels, 16)
|
|
self.assertEqual(block.conv3.out_channels, 64)
|
|
self.assertEqual(block.conv3.kernel_size, (1, 1))
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
self.assertEqual(x_out.shape, (1, 64, 56, 56))
|
|
|
|
# ViPNAS_Bottleneck with stride 1 and downsample
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(64, 128, kernel_size=1), nn.BatchNorm2d(128))
|
|
block = ViPNAS_Bottleneck(
|
|
64, 128, style='pytorch', downsample=downsample)
|
|
self.assertEqual(block.in_channels, 64)
|
|
self.assertEqual(block.mid_channels, 32)
|
|
self.assertEqual(block.out_channels, 128)
|
|
self.assertEqual(block.conv1.in_channels, 64)
|
|
self.assertEqual(block.conv1.out_channels, 32)
|
|
self.assertEqual(block.conv1.kernel_size, (1, 1))
|
|
self.assertEqual(block.conv2.in_channels, 32)
|
|
self.assertEqual(block.conv2.out_channels, 32)
|
|
self.assertEqual(block.conv2.kernel_size, (3, 3))
|
|
self.assertEqual(block.conv3.in_channels, 32)
|
|
self.assertEqual(block.conv3.out_channels, 128)
|
|
self.assertEqual(block.conv3.kernel_size, (1, 1))
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
self.assertEqual(x_out.shape, (1, 128, 56, 56))
|
|
|
|
# ViPNAS_Bottleneck with stride 2 and downsample
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(64, 128, kernel_size=1, stride=2), nn.BatchNorm2d(128))
|
|
block = ViPNAS_Bottleneck(
|
|
64, 128, stride=2, style='pytorch', downsample=downsample)
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
self.assertEqual(x_out.shape, (1, 128, 28, 28))
|
|
|
|
# ViPNAS_Bottleneck with expansion 2
|
|
block = ViPNAS_Bottleneck(64, 64, style='pytorch', expansion=2)
|
|
self.assertEqual(block.in_channels, 64)
|
|
self.assertEqual(block.mid_channels, 32)
|
|
self.assertEqual(block.out_channels, 64)
|
|
self.assertEqual(block.conv1.in_channels, 64)
|
|
self.assertEqual(block.conv1.out_channels, 32)
|
|
self.assertEqual(block.conv1.kernel_size, (1, 1))
|
|
self.assertEqual(block.conv2.in_channels, 32)
|
|
self.assertEqual(block.conv2.out_channels, 32)
|
|
self.assertEqual(block.conv2.kernel_size, (3, 3))
|
|
self.assertEqual(block.conv3.in_channels, 32)
|
|
self.assertEqual(block.conv3.out_channels, 64)
|
|
self.assertEqual(block.conv3.kernel_size, (1, 1))
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
self.assertEqual(x_out.shape, (1, 64, 56, 56))
|
|
|
|
# Test ViPNAS_Bottleneck with checkpointing
|
|
block = ViPNAS_Bottleneck(64, 64, with_cp=True)
|
|
block.train()
|
|
self.assertTrue(block.with_cp)
|
|
x = torch.randn(1, 64, 56, 56, requires_grad=True)
|
|
x_out = block(x)
|
|
self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
|
|
|
|
def test_vipnas_bottleneck_reslayer(self):
|
|
# 3 Bottleneck w/o downsample
|
|
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 32)
|
|
self.assertEqual(len(layer), 3)
|
|
for i in range(3):
|
|
self.assertEqual(layer[i].in_channels, 32)
|
|
self.assertEqual(layer[i].out_channels, 32)
|
|
self.assertIsNone(layer[i].downsample)
|
|
x = torch.randn(1, 32, 56, 56)
|
|
x_out = layer(x)
|
|
self.assertEqual(x_out.shape, (1, 32, 56, 56))
|
|
|
|
# 3 ViPNAS_Bottleneck w/ stride 1 and downsample
|
|
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 64)
|
|
self.assertEqual(len(layer), 3)
|
|
self.assertEqual(layer[0].in_channels, 32)
|
|
self.assertEqual(layer[0].out_channels, 64)
|
|
self.assertEqual(layer[0].stride, 1)
|
|
self.assertEqual(layer[0].conv1.out_channels, 64)
|
|
self.assertEqual(
|
|
layer[0].downsample is not None and len(layer[0].downsample), 2)
|
|
self.assertIsInstance(layer[0].downsample[0], nn.Conv2d)
|
|
self.assertEqual(layer[0].downsample[0].stride, (1, 1))
|
|
for i in range(1, 3):
|
|
self.assertEqual(layer[i].in_channels, 64)
|
|
self.assertEqual(layer[i].out_channels, 64)
|
|
self.assertEqual(layer[i].conv1.out_channels, 64)
|
|
self.assertEqual(layer[i].stride, 1)
|
|
self.assertIsNone(layer[i].downsample)
|
|
x = torch.randn(1, 32, 56, 56)
|
|
x_out = layer(x)
|
|
self.assertEqual(x_out.shape, (1, 64, 56, 56))
|
|
|
|
# 3 ViPNAS_Bottleneck w/ stride 2 and downsample
|
|
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 64, stride=2)
|
|
self.assertEqual(len(layer), 3)
|
|
self.assertEqual(layer[0].in_channels, 32)
|
|
self.assertEqual(layer[0].out_channels, 64)
|
|
self.assertEqual(layer[0].stride, 2)
|
|
self.assertEqual(layer[0].conv1.out_channels, 64)
|
|
self.assertEqual(
|
|
layer[0].downsample is not None and len(layer[0].downsample), 2)
|
|
self.assertIsInstance(layer[0].downsample[0], nn.Conv2d)
|
|
self.assertEqual(layer[0].downsample[0].stride, (2, 2))
|
|
for i in range(1, 3):
|
|
self.assertEqual(layer[i].in_channels, 64)
|
|
self.assertEqual(layer[i].out_channels, 64)
|
|
self.assertEqual(layer[i].conv1.out_channels, 64)
|
|
self.assertEqual(layer[i].stride, 1)
|
|
self.assertIsNone(layer[i].downsample)
|
|
x = torch.randn(1, 32, 56, 56)
|
|
x_out = layer(x)
|
|
self.assertEqual(x_out.shape, (1, 64, 28, 28))
|
|
|
|
# 3 ViPNAS_Bottleneck w/ stride 2 and downsample with avg pool
|
|
layer = ViPNAS_ResLayer(
|
|
ViPNAS_Bottleneck, 3, 32, 64, stride=2, avg_down=True)
|
|
self.assertEqual(len(layer), 3)
|
|
self.assertEqual(layer[0].in_channels, 32)
|
|
self.assertEqual(layer[0].out_channels, 64)
|
|
self.assertEqual(layer[0].stride, 2)
|
|
self.assertEqual(layer[0].conv1.out_channels, 64)
|
|
self.assertEqual(
|
|
layer[0].downsample is not None and len(layer[0].downsample), 3)
|
|
self.assertIsInstance(layer[0].downsample[0], nn.AvgPool2d)
|
|
self.assertEqual(layer[0].downsample[0].stride, 2)
|
|
for i in range(1, 3):
|
|
self.assertEqual(layer[i].in_channels, 64)
|
|
self.assertEqual(layer[i].out_channels, 64)
|
|
self.assertEqual(layer[i].conv1.out_channels, 64)
|
|
self.assertEqual(layer[i].stride, 1)
|
|
self.assertIsNone(layer[i].downsample)
|
|
x = torch.randn(1, 32, 56, 56)
|
|
x_out = layer(x)
|
|
self.assertEqual(x_out.shape, (1, 64, 28, 28))
|
|
|
|
# 3 ViPNAS_Bottleneck with custom expansion
|
|
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 32, expansion=2)
|
|
self.assertEqual(len(layer), 3)
|
|
for i in range(3):
|
|
self.assertEqual(layer[i].in_channels, 32)
|
|
self.assertEqual(layer[i].out_channels, 32)
|
|
self.assertEqual(layer[i].stride, 1)
|
|
self.assertEqual(layer[i].conv1.out_channels, 16)
|
|
self.assertIsNone(layer[i].downsample)
|
|
x = torch.randn(1, 32, 56, 56)
|
|
x_out = layer(x)
|
|
self.assertEqual(x_out.shape, (1, 32, 56, 56))
|
|
|
|
def test_resnet(self):
|
|
"""Test ViPNAS_ResNet backbone."""
|
|
with self.assertRaises(KeyError):
|
|
# ViPNAS_ResNet depth should be in [50]
|
|
ViPNAS_ResNet(20)
|
|
|
|
with self.assertRaises(AssertionError):
|
|
# In ViPNAS_ResNet: 1 <= num_stages <= 4
|
|
ViPNAS_ResNet(50, num_stages=0)
|
|
|
|
with self.assertRaises(AssertionError):
|
|
# In ViPNAS_ResNet: 1 <= num_stages <= 4
|
|
ViPNAS_ResNet(50, num_stages=5)
|
|
|
|
with self.assertRaises(AssertionError):
|
|
# len(strides) == len(dilations) == num_stages
|
|
ViPNAS_ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)
|
|
|
|
with self.assertRaises(TypeError):
|
|
# init_weights must have no parameter
|
|
model = ViPNAS_ResNet(50)
|
|
model.init_weights(pretrained=0)
|
|
|
|
with self.assertRaises(AssertionError):
|
|
# Style must be in ['pytorch', 'caffe']
|
|
ViPNAS_ResNet(50, style='tensorflow')
|
|
|
|
# Test ViPNAS_ResNet50 norm_eval=True
|
|
model = ViPNAS_ResNet(50, norm_eval=True)
|
|
model.init_weights()
|
|
model.train()
|
|
self.assertTrue(self.check_norm_state(model.modules(), False))
|
|
|
|
# Test ViPNAS_ResNet50 with first stage frozen
|
|
frozen_stages = 1
|
|
model = ViPNAS_ResNet(50, frozen_stages=frozen_stages)
|
|
model.init_weights()
|
|
model.train()
|
|
self.assertFalse(model.norm1.training)
|
|
for layer in [model.conv1, model.norm1]:
|
|
for param in layer.parameters():
|
|
self.assertFalse(param.requires_grad)
|
|
for i in range(1, frozen_stages + 1):
|
|
layer = getattr(model, f'layer{i}')
|
|
for mod in layer.modules():
|
|
if isinstance(mod, _BatchNorm):
|
|
self.assertFalse(mod.training)
|
|
for param in layer.parameters():
|
|
self.assertFalse(param.requires_grad)
|
|
|
|
# Test ViPNAS_ResNet50 with BatchNorm forward
|
|
model = ViPNAS_ResNet(50, out_indices=(0, 1, 2, 3))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
self.assertEqual(len(feat), 4)
|
|
self.assertEqual(feat[0].shape, (1, 80, 56, 56))
|
|
self.assertEqual(feat[1].shape, (1, 160, 28, 28))
|
|
self.assertEqual(feat[2].shape, (1, 304, 14, 14))
|
|
self.assertEqual(feat[3].shape, (1, 608, 7, 7))
|
|
|
|
# Test ViPNAS_ResNet50 with layers 1, 2, 3 out forward
|
|
model = ViPNAS_ResNet(50, out_indices=(0, 1, 2))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
self.assertEqual(len(feat), 3)
|
|
self.assertEqual(feat[0].shape, (1, 80, 56, 56))
|
|
self.assertEqual(feat[1].shape, (1, 160, 28, 28))
|
|
self.assertEqual(feat[2].shape, (1, 304, 14, 14))
|
|
|
|
# Test ViPNAS_ResNet50 with layers 3 (top feature maps) out forward
|
|
model = ViPNAS_ResNet(50, out_indices=(3, ))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
self.assertIsInstance(feat, tuple)
|
|
self.assertEqual(feat[-1].shape, (1, 608, 7, 7))
|
|
|
|
# Test ViPNAS_ResNet50 with checkpoint forward
|
|
model = ViPNAS_ResNet(50, out_indices=(0, 1, 2, 3), with_cp=True)
|
|
for m in model.modules():
|
|
if self.is_block(m):
|
|
self.assertTrue(m.with_cp)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
self.assertEqual(len(feat), 4)
|
|
self.assertEqual(feat[0].shape, (1, 80, 56, 56))
|
|
self.assertEqual(feat[1].shape, (1, 160, 28, 28))
|
|
self.assertEqual(feat[2].shape, (1, 304, 14, 14))
|
|
self.assertEqual(feat[3].shape, (1, 608, 7, 7))
|