mmpose/tests/test_models/test_backbones/test_vipnas_resnet.py

347 lines
14 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
import torch.nn as nn
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from mmpose.models.backbones import ViPNAS_ResNet
from mmpose.models.backbones.vipnas_resnet import (ViPNAS_Bottleneck,
ViPNAS_ResLayer,
get_expansion)
class TestVipnasResnet(TestCase):
@staticmethod
def is_block(modules):
"""Check if is ViPNAS_ResNet building block."""
if isinstance(modules, (ViPNAS_Bottleneck)):
return True
return False
@staticmethod
def all_zeros(modules):
"""Check if the weight(and bias) is all zero."""
weight_zero = torch.equal(modules.weight.data,
torch.zeros_like(modules.weight.data))
if hasattr(modules, 'bias'):
bias_zero = torch.equal(modules.bias.data,
torch.zeros_like(modules.bias.data))
else:
bias_zero = True
return weight_zero and bias_zero
@staticmethod
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_get_expansion(self):
self.assertEqual(get_expansion(ViPNAS_Bottleneck, 2), 2)
self.assertEqual(get_expansion(ViPNAS_Bottleneck), 1)
class MyResBlock(nn.Module):
expansion = 8
self.assertEqual(get_expansion(MyResBlock), 8)
# expansion must be an integer or None
with self.assertRaises(TypeError):
get_expansion(ViPNAS_Bottleneck, '0')
# expansion is not specified and cannot be inferred
with self.assertRaises(TypeError):
class SomeModule(nn.Module):
pass
get_expansion(SomeModule)
def test_vipnas_bottleneck(self):
# style must be in ['pytorch', 'caffe']
with self.assertRaises(AssertionError):
ViPNAS_Bottleneck(64, 64, style='tensorflow')
# expansion must be divisible by out_channels
with self.assertRaises(AssertionError):
ViPNAS_Bottleneck(64, 64, expansion=3)
# Test ViPNAS_Bottleneck style
block = ViPNAS_Bottleneck(64, 64, stride=2, style='pytorch')
self.assertEqual(block.conv1.stride, (1, 1))
self.assertEqual(block.conv2.stride, (2, 2))
block = ViPNAS_Bottleneck(64, 64, stride=2, style='caffe')
self.assertEqual(block.conv1.stride, (2, 2))
self.assertEqual(block.conv2.stride, (1, 1))
# ViPNAS_Bottleneck with stride 1
block = ViPNAS_Bottleneck(64, 64, style='pytorch')
self.assertEqual(block.in_channels, 64)
self.assertEqual(block.mid_channels, 16)
self.assertEqual(block.out_channels, 64)
self.assertEqual(block.conv1.in_channels, 64)
self.assertEqual(block.conv1.out_channels, 16)
self.assertEqual(block.conv1.kernel_size, (1, 1))
self.assertEqual(block.conv2.in_channels, 16)
self.assertEqual(block.conv2.out_channels, 16)
self.assertEqual(block.conv2.kernel_size, (3, 3))
self.assertEqual(block.conv3.in_channels, 16)
self.assertEqual(block.conv3.out_channels, 64)
self.assertEqual(block.conv3.kernel_size, (1, 1))
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, (1, 64, 56, 56))
# ViPNAS_Bottleneck with stride 1 and downsample
downsample = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1), nn.BatchNorm2d(128))
block = ViPNAS_Bottleneck(
64, 128, style='pytorch', downsample=downsample)
self.assertEqual(block.in_channels, 64)
self.assertEqual(block.mid_channels, 32)
self.assertEqual(block.out_channels, 128)
self.assertEqual(block.conv1.in_channels, 64)
self.assertEqual(block.conv1.out_channels, 32)
self.assertEqual(block.conv1.kernel_size, (1, 1))
self.assertEqual(block.conv2.in_channels, 32)
self.assertEqual(block.conv2.out_channels, 32)
self.assertEqual(block.conv2.kernel_size, (3, 3))
self.assertEqual(block.conv3.in_channels, 32)
self.assertEqual(block.conv3.out_channels, 128)
self.assertEqual(block.conv3.kernel_size, (1, 1))
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, (1, 128, 56, 56))
# ViPNAS_Bottleneck with stride 2 and downsample
downsample = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1, stride=2), nn.BatchNorm2d(128))
block = ViPNAS_Bottleneck(
64, 128, stride=2, style='pytorch', downsample=downsample)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, (1, 128, 28, 28))
# ViPNAS_Bottleneck with expansion 2
block = ViPNAS_Bottleneck(64, 64, style='pytorch', expansion=2)
self.assertEqual(block.in_channels, 64)
self.assertEqual(block.mid_channels, 32)
self.assertEqual(block.out_channels, 64)
self.assertEqual(block.conv1.in_channels, 64)
self.assertEqual(block.conv1.out_channels, 32)
self.assertEqual(block.conv1.kernel_size, (1, 1))
self.assertEqual(block.conv2.in_channels, 32)
self.assertEqual(block.conv2.out_channels, 32)
self.assertEqual(block.conv2.kernel_size, (3, 3))
self.assertEqual(block.conv3.in_channels, 32)
self.assertEqual(block.conv3.out_channels, 64)
self.assertEqual(block.conv3.kernel_size, (1, 1))
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, (1, 64, 56, 56))
# Test ViPNAS_Bottleneck with checkpointing
block = ViPNAS_Bottleneck(64, 64, with_cp=True)
block.train()
self.assertTrue(block.with_cp)
x = torch.randn(1, 64, 56, 56, requires_grad=True)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
def test_vipnas_bottleneck_reslayer(self):
# 3 Bottleneck w/o downsample
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 32)
self.assertEqual(len(layer), 3)
for i in range(3):
self.assertEqual(layer[i].in_channels, 32)
self.assertEqual(layer[i].out_channels, 32)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 32, 56, 56))
# 3 ViPNAS_Bottleneck w/ stride 1 and downsample
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 64)
self.assertEqual(len(layer), 3)
self.assertEqual(layer[0].in_channels, 32)
self.assertEqual(layer[0].out_channels, 64)
self.assertEqual(layer[0].stride, 1)
self.assertEqual(layer[0].conv1.out_channels, 64)
self.assertEqual(
layer[0].downsample is not None and len(layer[0].downsample), 2)
self.assertIsInstance(layer[0].downsample[0], nn.Conv2d)
self.assertEqual(layer[0].downsample[0].stride, (1, 1))
for i in range(1, 3):
self.assertEqual(layer[i].in_channels, 64)
self.assertEqual(layer[i].out_channels, 64)
self.assertEqual(layer[i].conv1.out_channels, 64)
self.assertEqual(layer[i].stride, 1)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 64, 56, 56))
# 3 ViPNAS_Bottleneck w/ stride 2 and downsample
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 64, stride=2)
self.assertEqual(len(layer), 3)
self.assertEqual(layer[0].in_channels, 32)
self.assertEqual(layer[0].out_channels, 64)
self.assertEqual(layer[0].stride, 2)
self.assertEqual(layer[0].conv1.out_channels, 64)
self.assertEqual(
layer[0].downsample is not None and len(layer[0].downsample), 2)
self.assertIsInstance(layer[0].downsample[0], nn.Conv2d)
self.assertEqual(layer[0].downsample[0].stride, (2, 2))
for i in range(1, 3):
self.assertEqual(layer[i].in_channels, 64)
self.assertEqual(layer[i].out_channels, 64)
self.assertEqual(layer[i].conv1.out_channels, 64)
self.assertEqual(layer[i].stride, 1)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 64, 28, 28))
# 3 ViPNAS_Bottleneck w/ stride 2 and downsample with avg pool
layer = ViPNAS_ResLayer(
ViPNAS_Bottleneck, 3, 32, 64, stride=2, avg_down=True)
self.assertEqual(len(layer), 3)
self.assertEqual(layer[0].in_channels, 32)
self.assertEqual(layer[0].out_channels, 64)
self.assertEqual(layer[0].stride, 2)
self.assertEqual(layer[0].conv1.out_channels, 64)
self.assertEqual(
layer[0].downsample is not None and len(layer[0].downsample), 3)
self.assertIsInstance(layer[0].downsample[0], nn.AvgPool2d)
self.assertEqual(layer[0].downsample[0].stride, 2)
for i in range(1, 3):
self.assertEqual(layer[i].in_channels, 64)
self.assertEqual(layer[i].out_channels, 64)
self.assertEqual(layer[i].conv1.out_channels, 64)
self.assertEqual(layer[i].stride, 1)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 64, 28, 28))
# 3 ViPNAS_Bottleneck with custom expansion
layer = ViPNAS_ResLayer(ViPNAS_Bottleneck, 3, 32, 32, expansion=2)
self.assertEqual(len(layer), 3)
for i in range(3):
self.assertEqual(layer[i].in_channels, 32)
self.assertEqual(layer[i].out_channels, 32)
self.assertEqual(layer[i].stride, 1)
self.assertEqual(layer[i].conv1.out_channels, 16)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 32, 56, 56))
def test_resnet(self):
"""Test ViPNAS_ResNet backbone."""
with self.assertRaises(KeyError):
# ViPNAS_ResNet depth should be in [50]
ViPNAS_ResNet(20)
with self.assertRaises(AssertionError):
# In ViPNAS_ResNet: 1 <= num_stages <= 4
ViPNAS_ResNet(50, num_stages=0)
with self.assertRaises(AssertionError):
# In ViPNAS_ResNet: 1 <= num_stages <= 4
ViPNAS_ResNet(50, num_stages=5)
with self.assertRaises(AssertionError):
# len(strides) == len(dilations) == num_stages
ViPNAS_ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)
with self.assertRaises(TypeError):
# init_weights must have no parameter
model = ViPNAS_ResNet(50)
model.init_weights(pretrained=0)
with self.assertRaises(AssertionError):
# Style must be in ['pytorch', 'caffe']
ViPNAS_ResNet(50, style='tensorflow')
# Test ViPNAS_ResNet50 norm_eval=True
model = ViPNAS_ResNet(50, norm_eval=True)
model.init_weights()
model.train()
self.assertTrue(self.check_norm_state(model.modules(), False))
# Test ViPNAS_ResNet50 with first stage frozen
frozen_stages = 1
model = ViPNAS_ResNet(50, frozen_stages=frozen_stages)
model.init_weights()
model.train()
self.assertFalse(model.norm1.training)
for layer in [model.conv1, model.norm1]:
for param in layer.parameters():
self.assertFalse(param.requires_grad)
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
self.assertFalse(mod.training)
for param in layer.parameters():
self.assertFalse(param.requires_grad)
# Test ViPNAS_ResNet50 with BatchNorm forward
model = ViPNAS_ResNet(50, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (1, 80, 56, 56))
self.assertEqual(feat[1].shape, (1, 160, 28, 28))
self.assertEqual(feat[2].shape, (1, 304, 14, 14))
self.assertEqual(feat[3].shape, (1, 608, 7, 7))
# Test ViPNAS_ResNet50 with layers 1, 2, 3 out forward
model = ViPNAS_ResNet(50, out_indices=(0, 1, 2))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 3)
self.assertEqual(feat[0].shape, (1, 80, 56, 56))
self.assertEqual(feat[1].shape, (1, 160, 28, 28))
self.assertEqual(feat[2].shape, (1, 304, 14, 14))
# Test ViPNAS_ResNet50 with layers 3 (top feature maps) out forward
model = ViPNAS_ResNet(50, out_indices=(3, ))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertIsInstance(feat, tuple)
self.assertEqual(feat[-1].shape, (1, 608, 7, 7))
# Test ViPNAS_ResNet50 with checkpoint forward
model = ViPNAS_ResNet(50, out_indices=(0, 1, 2, 3), with_cp=True)
for m in model.modules():
if self.is_block(m):
self.assertTrue(m.with_cp)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (1, 80, 56, 56))
self.assertEqual(feat[1].shape, (1, 160, 28, 28))
self.assertEqual(feat[2].shape, (1, 304, 14, 14))
self.assertEqual(feat[3].shape, (1, 608, 7, 7))