mmpose/tests/test_models/test_backbones/test_vgg.py

138 lines
4.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from mmpose.models.backbones import VGG
class TestVGG(TestCase):
@staticmethod
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_vgg(self):
"""Test VGG backbone."""
with self.assertRaises(KeyError):
# VGG depth should be in [11, 13, 16, 19]
VGG(18)
with self.assertRaises(AssertionError):
# In VGG: 1 <= num_stages <= 5
VGG(11, num_stages=0)
with self.assertRaises(AssertionError):
# In VGG: 1 <= num_stages <= 5
VGG(11, num_stages=6)
with self.assertRaises(AssertionError):
# len(dilations) == num_stages
VGG(11, dilations=(1, 1), num_stages=3)
# Test VGG11 norm_eval=True
model = VGG(11, norm_eval=True)
model.init_weights()
model.train()
self.assertTrue(self.check_norm_state(model.modules(), False))
# Test VGG11 forward without classifiers
model = VGG(11, out_indices=(0, 1, 2, 3, 4))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 5)
self.assertEqual(feat[0].shape, (1, 64, 112, 112))
self.assertEqual(feat[1].shape, (1, 128, 56, 56))
self.assertEqual(feat[2].shape, (1, 256, 28, 28))
self.assertEqual(feat[3].shape, (1, 512, 14, 14))
self.assertEqual(feat[4].shape, (1, 512, 7, 7))
# Test VGG11 forward with classifiers
model = VGG(11, num_classes=10, out_indices=(0, 1, 2, 3, 4, 5))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 6)
self.assertEqual(feat[0].shape, (1, 64, 112, 112))
self.assertEqual(feat[1].shape, (1, 128, 56, 56))
self.assertEqual(feat[2].shape, (1, 256, 28, 28))
self.assertEqual(feat[3].shape, (1, 512, 14, 14))
self.assertEqual(feat[4].shape, (1, 512, 7, 7))
self.assertEqual(feat[5].shape, (1, 10))
# Test VGG11BN forward
model = VGG(11, norm_cfg=dict(type='BN'), out_indices=(0, 1, 2, 3, 4))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 5)
self.assertEqual(feat[0].shape, (1, 64, 112, 112))
self.assertEqual(feat[1].shape, (1, 128, 56, 56))
self.assertEqual(feat[2].shape, (1, 256, 28, 28))
self.assertEqual(feat[3].shape, (1, 512, 14, 14))
self.assertEqual(feat[4].shape, (1, 512, 7, 7))
# Test VGG11BN forward with classifiers
model = VGG(
11,
num_classes=10,
norm_cfg=dict(type='BN'),
out_indices=(0, 1, 2, 3, 4, 5))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 6)
self.assertEqual(feat[0].shape, (1, 64, 112, 112))
self.assertEqual(feat[1].shape, (1, 128, 56, 56))
self.assertEqual(feat[2].shape, (1, 256, 28, 28))
self.assertEqual(feat[3].shape, (1, 512, 14, 14))
self.assertEqual(feat[4].shape, (1, 512, 7, 7))
self.assertEqual(feat[5].shape, (1, 10))
# Test VGG13 with layers 1, 2, 3 out forward
model = VGG(13, out_indices=(0, 1, 2))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 3)
self.assertEqual(feat[0].shape, (1, 64, 112, 112))
self.assertEqual(feat[1].shape, (1, 128, 56, 56))
self.assertEqual(feat[2].shape, (1, 256, 28, 28))
# Test VGG16 with top feature maps out forward
model = VGG(16)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 1)
self.assertEqual(feat[-1].shape, (1, 512, 7, 7))
# Test VGG19 with classification score out forward
model = VGG(19, num_classes=10)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 1)
self.assertEqual(feat[-1].shape, (1, 10))