mmpose/tests/test_models/test_backbones/test_tcn.py

158 lines
5.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import numpy as np
import torch
import torch.nn as nn
from mmpose.models.backbones import TCN
from mmpose.models.backbones.tcn import BasicTemporalBlock
class TestTCN(TestCase):
def test_basic_temporal_block(self):
with self.assertRaises(AssertionError):
# padding( + shift) should not be larger than x.shape[2]
block = BasicTemporalBlock(1024, 1024, dilation=81)
x = torch.rand(2, 1024, 150)
x_out = block(x)
with self.assertRaises(AssertionError):
# when use_stride_conv is True, shift + kernel_size // 2 should
# not be larger than x.shape[2]
block = BasicTemporalBlock(
1024, 1024, kernel_size=5, causal=True, use_stride_conv=True)
x = torch.rand(2, 1024, 3)
x_out = block(x)
# BasicTemporalBlock with causal == False
block = BasicTemporalBlock(1024, 1024)
x = torch.rand(2, 1024, 241)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([2, 1024, 235]))
# BasicTemporalBlock with causal == True
block = BasicTemporalBlock(1024, 1024, causal=True)
x = torch.rand(2, 1024, 241)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([2, 1024, 235]))
# BasicTemporalBlock with residual == False
block = BasicTemporalBlock(1024, 1024, residual=False)
x = torch.rand(2, 1024, 241)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([2, 1024, 235]))
# BasicTemporalBlock, use_stride_conv == True
block = BasicTemporalBlock(1024, 1024, use_stride_conv=True)
x = torch.rand(2, 1024, 81)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([2, 1024, 27]))
# BasicTemporalBlock with use_stride_conv == True and causal == True
block = BasicTemporalBlock(
1024, 1024, use_stride_conv=True, causal=True)
x = torch.rand(2, 1024, 81)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([2, 1024, 27]))
def test_tcn_backbone(self):
with self.assertRaises(AssertionError):
# num_blocks should equal len(kernel_sizes) - 1
TCN(in_channels=34, num_blocks=3, kernel_sizes=(3, 3, 3))
with self.assertRaises(AssertionError):
# kernel size should be odd
TCN(in_channels=34, kernel_sizes=(3, 4, 3))
# Test TCN with 2 blocks (use_stride_conv == False)
model = TCN(in_channels=34, num_blocks=2, kernel_sizes=(3, 3, 3))
pose2d = torch.rand((2, 34, 243))
feat = model(pose2d)
self.assertEqual(len(feat), 2)
self.assertEqual(feat[0].shape, (2, 1024, 235))
self.assertEqual(feat[1].shape, (2, 1024, 217))
# Test TCN with 4 blocks and weight norm clip
max_norm = 0.1
model = TCN(
in_channels=34,
num_blocks=4,
kernel_sizes=(3, 3, 3, 3, 3),
max_norm=max_norm)
pose2d = torch.rand((2, 34, 243))
feat = model(pose2d)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (2, 1024, 235))
self.assertEqual(feat[1].shape, (2, 1024, 217))
self.assertEqual(feat[2].shape, (2, 1024, 163))
self.assertEqual(feat[3].shape, (2, 1024, 1))
for module in model.modules():
if isinstance(module, torch.nn.modules.conv._ConvNd):
norm = module.weight.norm().item()
np.testing.assert_allclose(
np.maximum(norm, max_norm), max_norm, rtol=1e-4)
# Test TCN with 4 blocks (use_stride_conv == True)
model = TCN(
in_channels=34,
num_blocks=4,
kernel_sizes=(3, 3, 3, 3, 3),
use_stride_conv=True)
pose2d = torch.rand((2, 34, 243))
feat = model(pose2d)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (2, 1024, 27))
self.assertEqual(feat[1].shape, (2, 1024, 9))
self.assertEqual(feat[2].shape, (2, 1024, 3))
self.assertEqual(feat[3].shape, (2, 1024, 1))
# Check that the model w. or w/o use_stride_conv will have the same
# output and gradient after a forward+backward pass
model1 = TCN(
in_channels=34,
stem_channels=4,
num_blocks=1,
kernel_sizes=(3, 3),
dropout=0,
residual=False,
norm_cfg=None)
model2 = TCN(
in_channels=34,
stem_channels=4,
num_blocks=1,
kernel_sizes=(3, 3),
dropout=0,
residual=False,
norm_cfg=None,
use_stride_conv=True)
for m in model1.modules():
if isinstance(m, nn.Conv1d):
nn.init.constant_(m.weight, 0.5)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
for m in model2.modules():
if isinstance(m, nn.Conv1d):
nn.init.constant_(m.weight, 0.5)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
input1 = torch.rand((1, 34, 9))
input2 = input1.clone()
outputs1 = model1(input1)
outputs2 = model2(input2)
for output1, output2 in zip(outputs1, outputs2):
self.assertTrue(torch.isclose(output1, output2).all())
criterion = nn.MSELoss()
target = torch.rand(output1.shape)
loss1 = criterion(output1, target)
loss2 = criterion(output2, target)
loss1.backward()
loss2.backward()
for m1, m2 in zip(model1.modules(), model2.modules()):
if isinstance(m1, nn.Conv1d):
self.assertTrue(
torch.isclose(m1.weight.grad, m2.weight.grad).all())