mmpose/tests/test_models/test_backbones/test_swin.py

82 lines
3.0 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
from mmpose.models.backbones.swin import SwinBlock, SwinTransformer
class TestSwin(TestCase):
def test_swin_block(self):
# test SwinBlock structure and forward
block = SwinBlock(embed_dims=64, num_heads=4, feedforward_channels=256)
self.assertEqual(block.ffn.embed_dims, 64)
self.assertEqual(block.attn.w_msa.num_heads, 4)
self.assertEqual(block.ffn.feedforward_channels, 256)
x = torch.randn(1, 56 * 56, 64)
x_out = block(x, (56, 56))
self.assertEqual(x_out.shape, torch.Size([1, 56 * 56, 64]))
# Test BasicBlock with checkpoint forward
block = SwinBlock(
embed_dims=64, num_heads=4, feedforward_channels=256, with_cp=True)
self.assertTrue(block.with_cp)
x = torch.randn(1, 56 * 56, 64)
x_out = block(x, (56, 56))
self.assertEqual(x_out.shape, torch.Size([1, 56 * 56, 64]))
def test_swin_transformer(self):
"""Test Swin Transformer backbone."""
with self.assertRaises(AssertionError):
# Because swin uses non-overlapping patch embed, so the stride of
# patch embed must be equal to patch size.
SwinTransformer(strides=(2, 2, 2, 2), patch_size=4)
# test pretrained image size
with self.assertRaises(AssertionError):
SwinTransformer(pretrain_img_size=(224, 224, 224))
# Test absolute position embedding
temp = torch.randn((1, 3, 224, 224))
model = SwinTransformer(pretrain_img_size=224, use_abs_pos_embed=True)
model.init_weights()
model(temp)
# Test patch norm
model = SwinTransformer(patch_norm=False)
model(temp)
# Test normal inference
temp = torch.randn((1, 3, 32, 32))
model = SwinTransformer()
outs = model(temp)
self.assertEqual(outs[0].shape, (1, 96, 8, 8))
self.assertEqual(outs[1].shape, (1, 192, 4, 4))
self.assertEqual(outs[2].shape, (1, 384, 2, 2))
self.assertEqual(outs[3].shape, (1, 768, 1, 1))
# Test abnormal inference size
temp = torch.randn((1, 3, 31, 31))
model = SwinTransformer()
outs = model(temp)
self.assertEqual(outs[0].shape, (1, 96, 8, 8))
self.assertEqual(outs[1].shape, (1, 192, 4, 4))
self.assertEqual(outs[2].shape, (1, 384, 2, 2))
self.assertEqual(outs[3].shape, (1, 768, 1, 1))
# Test abnormal inference size
temp = torch.randn((1, 3, 112, 137))
model = SwinTransformer()
outs = model(temp)
self.assertEqual(outs[0].shape, (1, 96, 28, 35))
self.assertEqual(outs[1].shape, (1, 192, 14, 18))
self.assertEqual(outs[2].shape, (1, 384, 7, 9))
self.assertEqual(outs[3].shape, (1, 768, 4, 5))
model = SwinTransformer(frozen_stages=4)
model.train()
for p in model.parameters():
self.assertFalse(p.requires_grad)