mmpose/tests/test_models/test_backbones/test_shufflenet_v2.py

208 lines
7.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmpose.models.backbones import ShuffleNetV2
from mmpose.models.backbones.shufflenet_v2 import InvertedResidual
class TestShufflenetV2(TestCase):
@staticmethod
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (InvertedResidual, )):
return True
return False
@staticmethod
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
@staticmethod
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_shufflenetv2_invertedresidual(self):
with self.assertRaises(AssertionError):
# when stride==1, in_channels should be equal to
# out_channels // 2 * 2
InvertedResidual(24, 32, stride=1)
with self.assertRaises(AssertionError):
# when in_channels != out_channels // 2 * 2, stride should not be
# equal to 1.
InvertedResidual(24, 32, stride=1)
# Test InvertedResidual forward
block = InvertedResidual(24, 48, stride=2)
x = torch.randn(1, 24, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size((1, 48, 28, 28)))
# Test InvertedResidual with checkpoint forward
block = InvertedResidual(48, 48, stride=1, with_cp=True)
self.assertTrue(block.with_cp)
x = torch.randn(1, 48, 56, 56)
x.requires_grad = True
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size((1, 48, 56, 56)))
def test_shufflenetv2_backbone(self):
with self.assertRaises(ValueError):
# groups must be in 0.5, 1.0, 1.5, 2.0]
ShuffleNetV2(widen_factor=3.0)
with self.assertRaises(ValueError):
# frozen_stages must be in [0, 1, 2, 3]
ShuffleNetV2(widen_factor=1.0, frozen_stages=4)
with self.assertRaises(ValueError):
# out_indices must be in [0, 1, 2, 3]
ShuffleNetV2(widen_factor=1.0, out_indices=(4, ))
with self.assertRaises(TypeError):
# init_weights must have no parameter
model = ShuffleNetV2()
model.init_weights(pretrained=1)
# Test ShuffleNetV2 norm state
model = ShuffleNetV2()
model.init_weights()
model.train()
self.assertTrue(self.check_norm_state(model.modules(), True))
# Test ShuffleNetV2 with first stage frozen
frozen_stages = 1
model = ShuffleNetV2(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for param in model.conv1.parameters():
self.assertFalse(param.requires_grad)
for i in range(0, frozen_stages):
layer = model.layers[i]
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
self.assertFalse(mod.training)
for param in layer.parameters():
self.assertFalse(param.requires_grad)
# Test ShuffleNetV2 with norm_eval
model = ShuffleNetV2(norm_eval=True)
model.init_weights()
model.train()
self.assertTrue(self.check_norm_state(model.modules(), False))
# Test ShuffleNetV2 forward with widen_factor=0.5
model = ShuffleNetV2(widen_factor=0.5, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
for m in model.modules():
if self.is_norm(m):
self.assertIsInstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, torch.Size((1, 48, 28, 28)))
self.assertEqual(feat[1].shape, torch.Size((1, 96, 14, 14)))
self.assertEqual(feat[2].shape, torch.Size((1, 192, 7, 7)))
# Test ShuffleNetV2 forward with widen_factor=1.0
model = ShuffleNetV2(widen_factor=1.0, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
for m in model.modules():
if self.is_norm(m):
self.assertIsInstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, torch.Size((1, 116, 28, 28)))
self.assertEqual(feat[1].shape, torch.Size((1, 232, 14, 14)))
self.assertEqual(feat[2].shape, torch.Size((1, 464, 7, 7)))
# Test ShuffleNetV2 forward with widen_factor=1.5
model = ShuffleNetV2(widen_factor=1.5, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
for m in model.modules():
if self.is_norm(m):
self.assertIsInstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, torch.Size((1, 176, 28, 28)))
self.assertEqual(feat[1].shape, torch.Size((1, 352, 14, 14)))
self.assertEqual(feat[2].shape, torch.Size((1, 704, 7, 7)))
# Test ShuffleNetV2 forward with widen_factor=2.0
model = ShuffleNetV2(widen_factor=2.0, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
for m in model.modules():
if self.is_norm(m):
self.assertIsInstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, torch.Size((1, 244, 28, 28)))
self.assertEqual(feat[1].shape, torch.Size((1, 488, 14, 14)))
self.assertEqual(feat[2].shape, torch.Size((1, 976, 7, 7)))
# Test ShuffleNetV2 forward with layers 3 forward
model = ShuffleNetV2(widen_factor=1.0, out_indices=(2, ))
model.init_weights()
model.train()
for m in model.modules():
if self.is_norm(m):
self.assertIsInstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertIsInstance(feat, tuple)
self.assertEqual(feat[-1].shape, torch.Size((1, 464, 7, 7)))
# Test ShuffleNetV2 forward with layers 1 2 forward
model = ShuffleNetV2(widen_factor=1.0, out_indices=(1, 2))
model.init_weights()
model.train()
for m in model.modules():
if self.is_norm(m):
self.assertIsInstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 2)
self.assertEqual(feat[0].shape, torch.Size((1, 232, 14, 14)))
self.assertEqual(feat[1].shape, torch.Size((1, 464, 7, 7)))
# Test ShuffleNetV2 forward with checkpoint forward
model = ShuffleNetV2(widen_factor=1.0, with_cp=True)
for m in model.modules():
if self.is_block(m):
self.assertTrue(m.with_cp)