mirror of https://github.com/open-mmlab/mmpose
166 lines
5.9 KiB
Python
166 lines
5.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from unittest import TestCase
|
|
|
|
import torch
|
|
from torch.nn.modules.batchnorm import _BatchNorm
|
|
|
|
from mmpose.models.backbones import SCNet
|
|
from mmpose.models.backbones.scnet import SCBottleneck, SCConv
|
|
|
|
|
|
class TestSCnet(TestCase):
|
|
|
|
@staticmethod
|
|
def is_block(modules):
|
|
"""Check if is SCNet building block."""
|
|
if isinstance(modules, (SCBottleneck, )):
|
|
return True
|
|
return False
|
|
|
|
@staticmethod
|
|
def is_norm(modules):
|
|
"""Check if is one of the norms."""
|
|
if isinstance(modules, (_BatchNorm, )):
|
|
return True
|
|
return False
|
|
|
|
@staticmethod
|
|
def all_zeros(modules):
|
|
"""Check if the weight(and bias) is all zero."""
|
|
weight_zero = torch.equal(modules.weight.data,
|
|
torch.zeros_like(modules.weight.data))
|
|
if hasattr(modules, 'bias'):
|
|
bias_zero = torch.equal(modules.bias.data,
|
|
torch.zeros_like(modules.bias.data))
|
|
else:
|
|
bias_zero = True
|
|
|
|
return weight_zero and bias_zero
|
|
|
|
@staticmethod
|
|
def check_norm_state(modules, train_state):
|
|
"""Check if norm layer is in correct train state."""
|
|
for mod in modules:
|
|
if isinstance(mod, _BatchNorm):
|
|
if mod.training != train_state:
|
|
return False
|
|
return True
|
|
|
|
def test_scnet_scconv(self):
|
|
# Test scconv forward
|
|
layer = SCConv(64, 64, 1, 4)
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = layer(x)
|
|
self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
|
|
|
|
def test_scnet_bottleneck(self):
|
|
# Test Bottleneck forward
|
|
block = SCBottleneck(64, 64)
|
|
x = torch.randn(1, 64, 56, 56)
|
|
x_out = block(x)
|
|
self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
|
|
|
|
def test_scnet_backbone(self):
|
|
"""Test scnet backbone."""
|
|
with self.assertRaises(KeyError):
|
|
# SCNet depth should be in [50, 101]
|
|
SCNet(20)
|
|
|
|
with self.assertRaises(TypeError):
|
|
# pretrained must be a string path
|
|
model = SCNet(50)
|
|
model.init_weights(pretrained=0)
|
|
|
|
# Test SCNet norm_eval=True
|
|
model = SCNet(50, norm_eval=True)
|
|
model.init_weights()
|
|
model.train()
|
|
self.assertTrue(self.check_norm_state(model.modules(), False))
|
|
|
|
# Test SCNet50 with first stage frozen
|
|
frozen_stages = 1
|
|
model = SCNet(50, frozen_stages=frozen_stages)
|
|
model.init_weights()
|
|
model.train()
|
|
self.assertFalse(model.norm1.training)
|
|
for layer in [model.conv1, model.norm1]:
|
|
for param in layer.parameters():
|
|
self.assertFalse(param.requires_grad)
|
|
for i in range(1, frozen_stages + 1):
|
|
layer = getattr(model, f'layer{i}')
|
|
for mod in layer.modules():
|
|
if isinstance(mod, _BatchNorm):
|
|
self.assertFalse(mod.training)
|
|
for param in layer.parameters():
|
|
self.assertFalse(param.requires_grad)
|
|
|
|
# Test SCNet with BatchNorm forward
|
|
model = SCNet(50, out_indices=(0, 1, 2, 3))
|
|
for m in model.modules():
|
|
if self.is_norm(m):
|
|
self.assertIsInstance(m, _BatchNorm)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(2, 3, 224, 224)
|
|
feat = model(imgs)
|
|
self.assertEqual(len(feat), 4)
|
|
self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56]))
|
|
self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28]))
|
|
self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14]))
|
|
self.assertEqual(feat[3].shape, torch.Size([2, 2048, 7, 7]))
|
|
|
|
# Test SCNet with layers 1, 2, 3 out forward
|
|
model = SCNet(50, out_indices=(0, 1, 2))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(2, 3, 224, 224)
|
|
feat = model(imgs)
|
|
self.assertEqual(len(feat), 3)
|
|
self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56]))
|
|
self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28]))
|
|
self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14]))
|
|
|
|
# Test SEResNet50 with layers 3 (top feature maps) out forward
|
|
model = SCNet(50, out_indices=(3, ))
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(2, 3, 224, 224)
|
|
feat = model(imgs)
|
|
self.assertIsInstance(feat, tuple)
|
|
self.assertEqual(feat[-1].shape, torch.Size([2, 2048, 7, 7]))
|
|
|
|
# Test SEResNet50 with checkpoint forward
|
|
model = SCNet(50, out_indices=(0, 1, 2, 3), with_cp=True)
|
|
for m in model.modules():
|
|
if self.is_block(m):
|
|
self.assertTrue(m.with_cp)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(2, 3, 224, 224)
|
|
feat = model(imgs)
|
|
self.assertEqual(len(feat), 4)
|
|
self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56]))
|
|
self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28]))
|
|
self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14]))
|
|
self.assertEqual(feat[3].shape, torch.Size([2, 2048, 7, 7]))
|
|
|
|
# Test SCNet zero initialization of residual
|
|
model = SCNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=True)
|
|
model.init_weights()
|
|
for m in model.modules():
|
|
if isinstance(m, SCBottleneck):
|
|
self.assertTrue(self.all_zeros(m.norm3))
|
|
model.train()
|
|
|
|
imgs = torch.randn(2, 3, 224, 224)
|
|
feat = model(imgs)
|
|
self.assertEqual(len(feat), 4)
|
|
self.assertEqual(feat[0].shape, torch.Size([2, 256, 56, 56]))
|
|
self.assertEqual(feat[1].shape, torch.Size([2, 512, 28, 28]))
|
|
self.assertEqual(feat[2].shape, torch.Size([2, 1024, 14, 14]))
|
|
self.assertEqual(feat[3].shape, torch.Size([2, 2048, 7, 7]))
|