mmpose/tests/test_models/test_backbones/test_resnext.py

67 lines
2.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
from mmpose.models.backbones import ResNeXt
from mmpose.models.backbones.resnext import Bottleneck as BottleneckX
class TestResnext(TestCase):
def test_bottleneck(self):
with self.assertRaises(AssertionError):
# Style must be in ['pytorch', 'caffe']
BottleneckX(
64, 64, groups=32, width_per_group=4, style='tensorflow')
# Test ResNeXt Bottleneck structure
block = BottleneckX(
64, 256, groups=32, width_per_group=4, stride=2, style='pytorch')
self.assertEqual(block.conv2.stride, (2, 2))
self.assertEqual(block.conv2.groups, 32)
self.assertEqual(block.conv2.out_channels, 128)
# Test ResNeXt Bottleneck forward
block = BottleneckX(
64, 64, base_channels=16, groups=32, width_per_group=4)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
def test_resnext(self):
with self.assertRaises(KeyError):
# ResNeXt depth should be in [50, 101, 152]
ResNeXt(depth=18)
# Test ResNeXt with group 32, width_per_group 4
model = ResNeXt(
depth=50, groups=32, width_per_group=4, out_indices=(0, 1, 2, 3))
for m in model.modules():
if isinstance(m, BottleneckX):
self.assertEqual(m.conv2.groups, 32)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, torch.Size([1, 256, 56, 56]))
self.assertEqual(feat[1].shape, torch.Size([1, 512, 28, 28]))
self.assertEqual(feat[2].shape, torch.Size([1, 1024, 14, 14]))
self.assertEqual(feat[3].shape, torch.Size([1, 2048, 7, 7]))
# Test ResNeXt with layers 3 out forward
model = ResNeXt(
depth=50, groups=32, width_per_group=4, out_indices=(3, ))
for m in model.modules():
if isinstance(m, BottleneckX):
self.assertEqual(m.conv2.groups, 32)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 1)
self.assertEqual(feat[-1].shape, torch.Size([1, 2048, 7, 7]))