mmpose/tests/test_models/test_backbones/test_resnet.py

561 lines
23 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from mmpose.models.backbones import ResNet, ResNetV1d
from mmpose.models.backbones.resnet import (BasicBlock, Bottleneck, ResLayer,
get_expansion)
class TestResnet(TestCase):
@staticmethod
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (BasicBlock, Bottleneck)):
return True
return False
@staticmethod
def all_zeros(modules):
"""Check if the weight(and bias) is all zero."""
weight_zero = torch.equal(modules.weight.data,
torch.zeros_like(modules.weight.data))
if hasattr(modules, 'bias'):
bias_zero = torch.equal(modules.bias.data,
torch.zeros_like(modules.bias.data))
else:
bias_zero = True
return weight_zero and bias_zero
@staticmethod
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_get_expansion(self):
self.assertEqual(get_expansion(Bottleneck, 2), 2)
self.assertEqual(get_expansion(BasicBlock), 1)
self.assertEqual(get_expansion(Bottleneck), 4)
class MyResBlock(nn.Module):
expansion = 8
self.assertEqual(get_expansion(MyResBlock), 8)
# expansion must be an integer or None
with self.assertRaises(TypeError):
get_expansion(Bottleneck, '0')
# expansion is not specified and cannot be inferred
with self.assertRaises(TypeError):
class SomeModule(nn.Module):
pass
get_expansion(SomeModule)
def test_basic_block(self):
# expansion must be 1
with self.assertRaises(AssertionError):
BasicBlock(64, 64, expansion=2)
# BasicBlock with stride 1, out_channels == in_channels
block = BasicBlock(64, 64)
self.assertEqual(block.in_channels, 64)
self.assertEqual(block.mid_channels, 64)
self.assertEqual(block.out_channels, 64)
self.assertEqual(block.conv1.in_channels, 64)
self.assertEqual(block.conv1.out_channels, 64)
self.assertEqual(block.conv1.kernel_size, (3, 3))
self.assertEqual(block.conv1.stride, (1, 1))
self.assertEqual(block.conv2.in_channels, 64)
self.assertEqual(block.conv2.out_channels, 64)
self.assertEqual(block.conv2.kernel_size, (3, 3))
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
# BasicBlock with stride 1 and downsample
downsample = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1, bias=False), nn.BatchNorm2d(128))
block = BasicBlock(64, 128, downsample=downsample)
self.assertEqual(block.in_channels, 64)
self.assertEqual(block.mid_channels, 128)
self.assertEqual(block.out_channels, 128)
self.assertEqual(block.conv1.in_channels, 64)
self.assertEqual(block.conv1.out_channels, 128)
self.assertEqual(block.conv1.kernel_size, (3, 3))
self.assertEqual(block.conv1.stride, (1, 1))
self.assertEqual(block.conv2.in_channels, 128)
self.assertEqual(block.conv2.out_channels, 128)
self.assertEqual(block.conv2.kernel_size, (3, 3))
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([1, 128, 56, 56]))
# BasicBlock with stride 2 and downsample
downsample = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(128))
block = BasicBlock(64, 128, stride=2, downsample=downsample)
self.assertEqual(block.in_channels, 64)
self.assertEqual(block.mid_channels, 128)
self.assertEqual(block.out_channels, 128)
self.assertEqual(block.conv1.in_channels, 64)
self.assertEqual(block.conv1.out_channels, 128)
self.assertEqual(block.conv1.kernel_size, (3, 3))
self.assertEqual(block.conv1.stride, (2, 2))
self.assertEqual(block.conv2.in_channels, 128)
self.assertEqual(block.conv2.out_channels, 128)
self.assertEqual(block.conv2.kernel_size, (3, 3))
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([1, 128, 28, 28]))
# forward with checkpointing
block = BasicBlock(64, 64, with_cp=True)
self.assertTrue(block.with_cp)
x = torch.randn(1, 64, 56, 56, requires_grad=True)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
def test_bottleneck(self):
# style must be in ['pytorch', 'caffe']
with self.assertRaises(AssertionError):
Bottleneck(64, 64, style='tensorflow')
# expansion must be divisible by out_channels
with self.assertRaises(AssertionError):
Bottleneck(64, 64, expansion=3)
# Test Bottleneck style
block = Bottleneck(64, 64, stride=2, style='pytorch')
self.assertEqual(block.conv1.stride, (1, 1))
self.assertEqual(block.conv2.stride, (2, 2))
block = Bottleneck(64, 64, stride=2, style='caffe')
self.assertEqual(block.conv1.stride, (2, 2))
self.assertEqual(block.conv2.stride, (1, 1))
# Bottleneck with stride 1
block = Bottleneck(64, 64, style='pytorch')
self.assertEqual(block.in_channels, 64)
self.assertEqual(block.mid_channels, 16)
self.assertEqual(block.out_channels, 64)
self.assertEqual(block.conv1.in_channels, 64)
self.assertEqual(block.conv1.out_channels, 16)
self.assertEqual(block.conv1.kernel_size, (1, 1))
self.assertEqual(block.conv2.in_channels, 16)
self.assertEqual(block.conv2.out_channels, 16)
self.assertEqual(block.conv2.kernel_size, (3, 3))
self.assertEqual(block.conv3.in_channels, 16)
self.assertEqual(block.conv3.out_channels, 64)
self.assertEqual(block.conv3.kernel_size, (1, 1))
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, (1, 64, 56, 56))
# Bottleneck with stride 1 and downsample
downsample = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1), nn.BatchNorm2d(128))
block = Bottleneck(64, 128, style='pytorch', downsample=downsample)
self.assertEqual(block.in_channels, 64)
self.assertEqual(block.mid_channels, 32)
self.assertEqual(block.out_channels, 128)
self.assertEqual(block.conv1.in_channels, 64)
self.assertEqual(block.conv1.out_channels, 32)
self.assertEqual(block.conv1.kernel_size, (1, 1))
self.assertEqual(block.conv2.in_channels, 32)
self.assertEqual(block.conv2.out_channels, 32)
self.assertEqual(block.conv2.kernel_size, (3, 3))
self.assertEqual(block.conv3.in_channels, 32)
self.assertEqual(block.conv3.out_channels, 128)
self.assertEqual(block.conv3.kernel_size, (1, 1))
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, (1, 128, 56, 56))
# Bottleneck with stride 2 and downsample
downsample = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1, stride=2), nn.BatchNorm2d(128))
block = Bottleneck(
64, 128, stride=2, style='pytorch', downsample=downsample)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, (1, 128, 28, 28))
# Bottleneck with expansion 2
block = Bottleneck(64, 64, style='pytorch', expansion=2)
self.assertEqual(block.in_channels, 64)
self.assertEqual(block.mid_channels, 32)
self.assertEqual(block.out_channels, 64)
self.assertEqual(block.conv1.in_channels, 64)
self.assertEqual(block.conv1.out_channels, 32)
self.assertEqual(block.conv1.kernel_size, (1, 1))
self.assertEqual(block.conv2.in_channels, 32)
self.assertEqual(block.conv2.out_channels, 32)
self.assertEqual(block.conv2.kernel_size, (3, 3))
self.assertEqual(block.conv3.in_channels, 32)
self.assertEqual(block.conv3.out_channels, 64)
self.assertEqual(block.conv3.kernel_size, (1, 1))
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
self.assertEqual(x_out.shape, (1, 64, 56, 56))
# Test Bottleneck with checkpointing
block = Bottleneck(64, 64, with_cp=True)
block.train()
self.assertTrue(block.with_cp)
x = torch.randn(1, 64, 56, 56, requires_grad=True)
x_out = block(x)
self.assertEqual(x_out.shape, torch.Size([1, 64, 56, 56]))
def test_basicblock_reslayer(self):
# 3 BasicBlock w/o downsample
layer = ResLayer(BasicBlock, 3, 32, 32)
self.assertEqual(len(layer), 3)
for i in range(3):
self.assertEqual(layer[i].in_channels, 32)
self.assertEqual(layer[i].out_channels, 32)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 32, 56, 56))
# 3 BasicBlock w/ stride 1 and downsample
layer = ResLayer(BasicBlock, 3, 32, 64)
self.assertEqual(len(layer), 3)
self.assertEqual(layer[0].in_channels, 32)
self.assertEqual(layer[0].out_channels, 64)
self.assertEqual(
layer[0].downsample is not None and len(layer[0].downsample), 2)
self.assertIsInstance(layer[0].downsample[0], nn.Conv2d)
self.assertEqual(layer[0].downsample[0].stride, (1, 1))
for i in range(1, 3):
self.assertEqual(layer[i].in_channels, 64)
self.assertEqual(layer[i].out_channels, 64)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 64, 56, 56))
# 3 BasicBlock w/ stride 2 and downsample
layer = ResLayer(BasicBlock, 3, 32, 64, stride=2)
self.assertEqual(len(layer), 3)
self.assertEqual(layer[0].in_channels, 32)
self.assertEqual(layer[0].out_channels, 64)
self.assertEqual(layer[0].stride, 2)
self.assertEqual(
layer[0].downsample is not None and len(layer[0].downsample), 2)
self.assertIsInstance(layer[0].downsample[0], nn.Conv2d)
self.assertEqual(layer[0].downsample[0].stride, (2, 2))
for i in range(1, 3):
self.assertEqual(layer[i].in_channels, 64)
self.assertEqual(layer[i].out_channels, 64)
self.assertEqual(layer[i].stride, 1)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 64, 28, 28))
# 3 BasicBlock w/ stride 2 and downsample with avg pool
layer = ResLayer(BasicBlock, 3, 32, 64, stride=2, avg_down=True)
self.assertEqual(len(layer), 3)
self.assertEqual(layer[0].in_channels, 32)
self.assertEqual(layer[0].out_channels, 64)
self.assertEqual(layer[0].stride, 2)
self.assertEqual(
layer[0].downsample is not None and len(layer[0].downsample), 3)
self.assertIsInstance(layer[0].downsample[0], nn.AvgPool2d)
self.assertEqual(layer[0].downsample[0].stride, 2)
for i in range(1, 3):
self.assertEqual(layer[i].in_channels, 64)
self.assertEqual(layer[i].out_channels, 64)
self.assertEqual(layer[i].stride, 1)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 64, 28, 28))
def test_bottleneck_reslayer(self):
# 3 Bottleneck w/o downsample
layer = ResLayer(Bottleneck, 3, 32, 32)
self.assertEqual(len(layer), 3)
for i in range(3):
self.assertEqual(layer[i].in_channels, 32)
self.assertEqual(layer[i].out_channels, 32)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 32, 56, 56))
# 3 Bottleneck w/ stride 1 and downsample
layer = ResLayer(Bottleneck, 3, 32, 64)
self.assertEqual(len(layer), 3)
self.assertEqual(layer[0].in_channels, 32)
self.assertEqual(layer[0].out_channels, 64)
self.assertEqual(layer[0].stride, 1)
self.assertEqual(layer[0].conv1.out_channels, 16)
self.assertEqual(
layer[0].downsample is not None and len(layer[0].downsample), 2)
self.assertIsInstance(layer[0].downsample[0], nn.Conv2d)
self.assertEqual(layer[0].downsample[0].stride, (1, 1))
for i in range(1, 3):
self.assertEqual(layer[i].in_channels, 64)
self.assertEqual(layer[i].out_channels, 64)
self.assertEqual(layer[i].conv1.out_channels, 16)
self.assertEqual(layer[i].stride, 1)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 64, 56, 56))
# 3 Bottleneck w/ stride 2 and downsample
layer = ResLayer(Bottleneck, 3, 32, 64, stride=2)
self.assertEqual(len(layer), 3)
self.assertEqual(layer[0].in_channels, 32)
self.assertEqual(layer[0].out_channels, 64)
self.assertEqual(layer[0].stride, 2)
self.assertEqual(layer[0].conv1.out_channels, 16)
self.assertEqual(
layer[0].downsample is not None and len(layer[0].downsample), 2)
self.assertIsInstance(layer[0].downsample[0], nn.Conv2d)
self.assertEqual(layer[0].downsample[0].stride, (2, 2))
for i in range(1, 3):
self.assertEqual(layer[i].in_channels, 64)
self.assertEqual(layer[i].out_channels, 64)
self.assertEqual(layer[i].conv1.out_channels, 16)
self.assertEqual(layer[i].stride, 1)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 64, 28, 28))
# 3 Bottleneck w/ stride 2 and downsample with avg pool
layer = ResLayer(Bottleneck, 3, 32, 64, stride=2, avg_down=True)
self.assertEqual(len(layer), 3)
self.assertEqual(layer[0].in_channels, 32)
self.assertEqual(layer[0].out_channels, 64)
self.assertEqual(layer[0].stride, 2)
self.assertEqual(layer[0].conv1.out_channels, 16)
self.assertEqual(
layer[0].downsample is not None and len(layer[0].downsample), 3)
self.assertIsInstance(layer[0].downsample[0], nn.AvgPool2d)
self.assertEqual(layer[0].downsample[0].stride, 2)
for i in range(1, 3):
self.assertEqual(layer[i].in_channels, 64)
self.assertEqual(layer[i].out_channels, 64)
self.assertEqual(layer[i].conv1.out_channels, 16)
self.assertEqual(layer[i].stride, 1)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 64, 28, 28))
# 3 Bottleneck with custom expansion
layer = ResLayer(Bottleneck, 3, 32, 32, expansion=2)
self.assertEqual(len(layer), 3)
for i in range(3):
self.assertEqual(layer[i].in_channels, 32)
self.assertEqual(layer[i].out_channels, 32)
self.assertEqual(layer[i].stride, 1)
self.assertEqual(layer[i].conv1.out_channels, 16)
self.assertIsNone(layer[i].downsample)
x = torch.randn(1, 32, 56, 56)
x_out = layer(x)
self.assertEqual(x_out.shape, (1, 32, 56, 56))
def test_resnet(self):
"""Test resnet backbone."""
with self.assertRaises(KeyError):
# ResNet depth should be in [18, 34, 50, 101, 152]
ResNet(20)
with self.assertRaises(AssertionError):
# In ResNet: 1 <= num_stages <= 4
ResNet(50, num_stages=0)
with self.assertRaises(AssertionError):
# In ResNet: 1 <= num_stages <= 4
ResNet(50, num_stages=5)
with self.assertRaises(AssertionError):
# len(strides) == len(dilations) == num_stages
ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)
with self.assertRaises(AssertionError):
# Style must be in ['pytorch', 'caffe']
ResNet(50, style='tensorflow')
# Test ResNet50 norm_eval=True
model = ResNet(50, norm_eval=True)
model.init_weights()
model.train()
self.assertTrue(self.check_norm_state(model.modules(), False))
# Test ResNet50 with torchvision pretrained weight
init_cfg = dict(type='Pretrained', checkpoint='torchvision://resnet50')
model = ResNet(depth=50, norm_eval=True, init_cfg=init_cfg)
model.train()
self.assertTrue(self.check_norm_state(model.modules(), False))
# Test ResNet50 with first stage frozen
frozen_stages = 1
model = ResNet(50, frozen_stages=frozen_stages)
model.init_weights()
model.train()
self.assertFalse(model.norm1.training)
for layer in [model.conv1, model.norm1]:
for param in layer.parameters():
self.assertFalse(param.requires_grad)
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
self.assertFalse(mod.training)
for param in layer.parameters():
self.assertFalse(param.requires_grad)
# Test ResNet18 forward
model = ResNet(18, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (1, 64, 56, 56))
self.assertEqual(feat[1].shape, (1, 128, 28, 28))
self.assertEqual(feat[2].shape, (1, 256, 14, 14))
self.assertEqual(feat[3].shape, (1, 512, 7, 7))
# Test ResNet50 with BatchNorm forward
model = ResNet(50, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (1, 256, 56, 56))
self.assertEqual(feat[1].shape, (1, 512, 28, 28))
self.assertEqual(feat[2].shape, (1, 1024, 14, 14))
self.assertEqual(feat[3].shape, (1, 2048, 7, 7))
# Test ResNet50 with layers 1, 2, 3 out forward
model = ResNet(50, out_indices=(0, 1, 2))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 3)
self.assertEqual(feat[0].shape, (1, 256, 56, 56))
self.assertEqual(feat[1].shape, (1, 512, 28, 28))
self.assertEqual(feat[2].shape, (1, 1024, 14, 14))
# Test ResNet50 with layers 3 (top feature maps) out forward
model = ResNet(50, out_indices=(3, ))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 1)
self.assertEqual(feat[-1].shape, (1, 2048, 7, 7))
# Test ResNet50 with checkpoint forward
model = ResNet(50, out_indices=(0, 1, 2, 3), with_cp=True)
for m in model.modules():
if self.is_block(m):
self.assertTrue(m.with_cp)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (1, 256, 56, 56))
self.assertEqual(feat[1].shape, (1, 512, 28, 28))
self.assertEqual(feat[2].shape, (1, 1024, 14, 14))
self.assertEqual(feat[3].shape, (1, 2048, 7, 7))
# zero initialization of residual blocks
model = ResNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=True)
model.init_weights()
for m in model.modules():
if isinstance(m, Bottleneck):
self.assertTrue(self.all_zeros(m.norm3))
elif isinstance(m, BasicBlock):
self.assertTrue(self.all_zeros(m.norm2))
# non-zero initialization of residual blocks
model = ResNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=False)
model.init_weights()
for m in model.modules():
if isinstance(m, Bottleneck):
self.assertFalse(self.all_zeros(m.norm3))
elif isinstance(m, BasicBlock):
self.assertFalse(self.all_zeros(m.norm2))
def test_resnet_v1d(self):
model = ResNetV1d(depth=50, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
self.assertEqual(len(model.stem), 3)
for i in range(3):
self.assertIsInstance(model.stem[i], ConvModule)
imgs = torch.randn(1, 3, 224, 224)
feat = model.stem(imgs)
self.assertEqual(feat.shape, (1, 64, 112, 112))
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (1, 256, 56, 56))
self.assertEqual(feat[1].shape, (1, 512, 28, 28))
self.assertEqual(feat[2].shape, (1, 1024, 14, 14))
self.assertEqual(feat[3].shape, (1, 2048, 7, 7))
# Test ResNet50V1d with first stage frozen
frozen_stages = 1
model = ResNetV1d(depth=50, frozen_stages=frozen_stages)
self.assertEqual(len(model.stem), 3)
for i in range(3):
self.assertIsInstance(model.stem[i], ConvModule)
model.init_weights()
model.train()
self.assertTrue(self.check_norm_state(model.stem, False))
for param in model.stem.parameters():
self.assertFalse(param.requires_grad)
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
self.assertFalse(mod.training)
for param in layer.parameters():
self.assertFalse(param.requires_grad)
def test_resnet_half_channel(self):
model = ResNet(50, base_channels=32, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (1, 128, 56, 56))
self.assertEqual(feat[1].shape, (1, 256, 28, 28))
self.assertEqual(feat[2].shape, (1, 512, 14, 14))
self.assertEqual(feat[3].shape, (1, 1024, 7, 7))