mmpose/tests/test_models/test_backbones/test_regnet.py

104 lines
3.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
from mmpose.models.backbones import RegNet
class TestRegnet(TestCase):
regnet_test_data = [
('regnetx_400mf',
dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22,
bot_mul=1.0), [32, 64, 160, 384]),
('regnetx_800mf',
dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16,
bot_mul=1.0), [64, 128, 288, 672]),
('regnetx_1.6gf',
dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18,
bot_mul=1.0), [72, 168, 408, 912]),
('regnetx_3.2gf',
dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25,
bot_mul=1.0), [96, 192, 432, 1008]),
('regnetx_4.0gf',
dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23,
bot_mul=1.0), [80, 240, 560, 1360]),
('regnetx_6.4gf',
dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17,
bot_mul=1.0), [168, 392, 784, 1624]),
('regnetx_8.0gf',
dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23,
bot_mul=1.0), [80, 240, 720, 1920]),
('regnetx_12gf',
dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19,
bot_mul=1.0), [224, 448, 896, 2240]),
]
def _test_regnet_backbone(self, arch_name, arch, out_channels):
with self.assertRaises(AssertionError):
# ResNeXt depth should be in [50, 101, 152]
RegNet(arch_name + '233')
# output the last feature map
model = RegNet(arch_name)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertIsInstance(feat, tuple)
self.assertEqual(feat[-1].shape, (1, out_channels[-1], 7, 7))
# output feature map of all stages
model = RegNet(arch_name, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (1, out_channels[0], 56, 56))
self.assertEqual(feat[1].shape, (1, out_channels[1], 28, 28))
self.assertEqual(feat[2].shape, (1, out_channels[2], 14, 14))
self.assertEqual(feat[3].shape, (1, out_channels[3], 7, 7))
def test_regnet_backbone(self):
for arch_name, arch, out_channels in self.regnet_test_data:
with self.subTest(
arch_name=arch_name, arch=arch, out_channels=out_channels):
self._test_regnet_backbone(arch_name, arch, out_channels)
def _test_custom_arch(self, arch_name, arch, out_channels):
# output the last feature map
model = RegNet(arch)
model.init_weights()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertIsInstance(feat, tuple)
self.assertEqual(feat[-1].shape, (1, out_channels[-1], 7, 7))
# output feature map of all stages
model = RegNet(arch, out_indices=(0, 1, 2, 3))
model.init_weights()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, (1, out_channels[0], 56, 56))
self.assertEqual(feat[1].shape, (1, out_channels[1], 28, 28))
self.assertEqual(feat[2].shape, (1, out_channels[2], 14, 14))
self.assertEqual(feat[3].shape, (1, out_channels[3], 7, 7))
def test_custom_arch(self):
for arch_name, arch, out_channels in self.regnet_test_data:
with self.subTest(
arch_name=arch_name, arch=arch, out_channels=out_channels):
self._test_custom_arch(arch_name, arch, out_channels)
def test_exception(self):
# arch must be a str or dict
with self.assertRaises(TypeError):
_ = RegNet(50)