mmpose/tests/test_models/test_backbones/test_csp_darknet.py

126 lines
4.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import unittest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmpose.models.backbones.csp_darknet import CSPDarknet
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
class TestCSPDarknetBackbone(unittest.TestCase):
def test_invalid_frozen_stages(self):
with self.assertRaises(ValueError):
CSPDarknet(frozen_stages=6)
def test_invalid_out_indices(self):
with self.assertRaises(AssertionError):
CSPDarknet(out_indices=[6])
def test_frozen_stages(self):
frozen_stages = 1
model = CSPDarknet(frozen_stages=frozen_stages)
model.train()
for mod in model.stem.modules():
for param in mod.parameters():
self.assertFalse(param.requires_grad)
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'stage{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
self.assertFalse(mod.training)
for param in layer.parameters():
self.assertFalse(param.requires_grad)
def test_norm_eval(self):
model = CSPDarknet(norm_eval=True)
model.train()
self.assertFalse(check_norm_state(model.modules(), True))
def test_csp_darknet_p5_forward(self):
model = CSPDarknet(
arch='P5', widen_factor=0.25, out_indices=range(0, 5))
model.train()
imgs = torch.randn(1, 3, 64, 64)
feat = model(imgs)
self.assertEqual(len(feat), 5)
self.assertEqual(feat[0].shape, torch.Size((1, 16, 32, 32)))
self.assertEqual(feat[1].shape, torch.Size((1, 32, 16, 16)))
self.assertEqual(feat[2].shape, torch.Size((1, 64, 8, 8)))
self.assertEqual(feat[3].shape, torch.Size((1, 128, 4, 4)))
self.assertEqual(feat[4].shape, torch.Size((1, 256, 2, 2)))
def test_csp_darknet_p6_forward(self):
model = CSPDarknet(
arch='P6',
widen_factor=0.25,
out_indices=range(0, 6),
spp_kernal_sizes=(3, 5, 7))
model.train()
imgs = torch.randn(1, 3, 128, 128)
feat = model(imgs)
self.assertEqual(feat[0].shape, torch.Size((1, 16, 64, 64)))
self.assertEqual(feat[1].shape, torch.Size((1, 32, 32, 32)))
self.assertEqual(feat[2].shape, torch.Size((1, 64, 16, 16)))
self.assertEqual(feat[3].shape, torch.Size((1, 128, 8, 8)))
self.assertEqual(feat[4].shape, torch.Size((1, 192, 4, 4)))
self.assertEqual(feat[5].shape, torch.Size((1, 256, 2, 2)))
def test_csp_darknet_custom_arch_forward(self):
arch_ovewrite = [[32, 56, 3, True, False], [56, 224, 2, True, False],
[224, 512, 1, True, False]]
model = CSPDarknet(
arch_ovewrite=arch_ovewrite,
widen_factor=0.25,
out_indices=(0, 1, 2, 3))
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
self.assertEqual(len(feat), 4)
self.assertEqual(feat[0].shape, torch.Size((1, 8, 16, 16)))
self.assertEqual(feat[1].shape, torch.Size((1, 14, 8, 8)))
self.assertEqual(feat[2].shape, torch.Size((1, 56, 4, 4)))
self.assertEqual(feat[3].shape, torch.Size((1, 128, 2, 2)))
def test_csp_darknet_custom_arch_norm(self):
model = CSPDarknet(widen_factor=0.125, out_indices=range(0, 5))
for m in model.modules():
if is_norm(m):
self.assertIsInstance(m, _BatchNorm)
model.train()
imgs = torch.randn(1, 3, 64, 64)
feat = model(imgs)
self.assertEqual(len(feat), 5)
self.assertEqual(feat[0].shape, torch.Size((1, 8, 32, 32)))
self.assertEqual(feat[1].shape, torch.Size((1, 16, 16, 16)))
self.assertEqual(feat[2].shape, torch.Size((1, 32, 8, 8)))
self.assertEqual(feat[3].shape, torch.Size((1, 64, 4, 4)))
self.assertEqual(feat[4].shape, torch.Size((1, 128, 2, 2)))
if __name__ == '__main__':
unittest.main()