mmpose/tests/test_models/test_backbones/test_cpm.py

67 lines
2.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
from mmpose.models.backbones import CPM
from mmpose.models.backbones.cpm import CpmBlock
class TestCPM(TestCase):
def test_cpm_block(self):
with self.assertRaises(AssertionError):
# len(channels) == len(kernels)
CpmBlock(
3, channels=[3, 3, 3], kernels=[
1,
])
# Test CPM Block
model = CpmBlock(3, channels=[3, 3, 3], kernels=[1, 1, 1])
model.train()
imgs = torch.randn(1, 3, 10, 10)
feat = model(imgs)
self.assertEqual(feat.shape, torch.Size([1, 3, 10, 10]))
def test_cpm_backbone(self):
with self.assertRaises(AssertionError):
# CPM's num_stacks should larger than 0
CPM(in_channels=3, out_channels=17, num_stages=-1)
with self.assertRaises(AssertionError):
# CPM's in_channels should be 3
CPM(in_channels=2, out_channels=17)
# Test CPM
model = CPM(in_channels=3, out_channels=17, num_stages=1)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 256, 192)
feat = model(imgs)
self.assertEqual(len(feat), 1)
self.assertEqual(feat[0].shape, torch.Size([1, 17, 32, 24]))
imgs = torch.randn(1, 3, 384, 288)
feat = model(imgs)
self.assertEqual(len(feat), 1)
self.assertEqual(feat[0].shape, torch.Size([1, 17, 48, 36]))
imgs = torch.randn(1, 3, 368, 368)
feat = model(imgs)
self.assertEqual(len(feat), 1)
self.assertEqual(feat[0].shape, torch.Size([1, 17, 46, 46]))
# Test CPM multi-stages
model = CPM(in_channels=3, out_channels=17, num_stages=2)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 368, 368)
feat = model(imgs)
self.assertEqual(len(feat), 2)
self.assertEqual(feat[0].shape, torch.Size([1, 17, 46, 46]))
self.assertEqual(feat[1].shape, torch.Size([1, 17, 46, 46]))