mmpose/tests/test_evaluation/test_metrics/test_posetrack18_metric.py

412 lines
16 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
from collections import defaultdict
from unittest import TestCase
import numpy as np
from mmengine.fileio import dump, load
from mmpose.datasets.datasets.utils import parse_pose_metainfo
from mmpose.evaluation.metrics import PoseTrack18Metric
class TestPoseTrack18Metric(TestCase):
def setUp(self):
"""Setup some variables which are used in every test method.
TestCase calls functions in this order: setUp() -> testMethod() ->
tearDown() -> cleanUp()
"""
self.tmp_dir = tempfile.TemporaryDirectory()
self.ann_file = 'tests/data/posetrack18/annotations/'\
'test_posetrack18_val.json'
posetrack18_meta_info = dict(
from_file='configs/_base_/datasets/posetrack18.py')
self.posetrack18_dataset_meta = parse_pose_metainfo(
posetrack18_meta_info)
self.db = load(self.ann_file)
self.topdown_data = self._convert_ann_to_topdown_batch_data()
assert len(self.topdown_data) == 14
self.bottomup_data = self._convert_ann_to_bottomup_batch_data()
assert len(self.bottomup_data) == 3
self.target = {
'posetrack18/Head AP': 100.0,
'posetrack18/Shou AP': 100.0,
'posetrack18/Elb AP': 100.0,
'posetrack18/Wri AP': 100.0,
'posetrack18/Hip AP': 100.0,
'posetrack18/Knee AP': 100.0,
'posetrack18/Ankl AP': 100.0,
'posetrack18/AP': 100.0,
}
def _convert_ann_to_topdown_batch_data(self):
"""Convert annotations to topdown-style batch data."""
topdown_data = []
for ann in self.db['annotations']:
w, h = ann['bbox'][2], ann['bbox'][3]
bboxes = np.array(ann['bbox'], dtype=np.float32).reshape(-1, 4)
bbox_scales = np.array([w * 1.25, h * 1.25]).reshape(-1, 2)
keypoints = np.array(ann['keypoints']).reshape((1, -1, 3))
gt_instances = {
'bbox_scales': bbox_scales,
'bboxes': bboxes,
'bbox_scores': np.ones((1, ), dtype=np.float32),
}
pred_instances = {
'keypoints': keypoints[..., :2],
'keypoint_scores': keypoints[..., -1],
}
data = {'inputs': None}
data_sample = {
'id': ann['id'],
'img_id': ann['image_id'],
'gt_instances': gt_instances,
'pred_instances': pred_instances
}
# batch size = 1
data_batch = [data]
data_samples = [data_sample]
topdown_data.append((data_batch, data_samples))
return topdown_data
def _convert_ann_to_bottomup_batch_data(self):
"""Convert annotations to bottomup-style batch data."""
img2ann = defaultdict(list)
for ann in self.db['annotations']:
img2ann[ann['image_id']].append(ann)
bottomup_data = []
for img_id, anns in img2ann.items():
keypoints = np.array([ann['keypoints'] for ann in anns]).reshape(
(len(anns), -1, 3))
gt_instances = {
'bbox_scores': np.ones((len(anns)), dtype=np.float32)
}
pred_instances = {
'keypoints': keypoints[..., :2],
'keypoint_scores': keypoints[..., -1],
}
data = {'inputs': None}
data_sample = {
'id': [ann['id'] for ann in anns],
'img_id': img_id,
'gt_instances': gt_instances,
'pred_instances': pred_instances
}
# batch size = 1
data_batch = [data]
data_samples = [data_sample]
bottomup_data.append((data_batch, data_samples))
return bottomup_data
def tearDown(self):
self.tmp_dir.cleanup()
def test_init(self):
"""test metric init method."""
# test score_mode option
with self.assertRaisesRegex(ValueError,
'`score_mode` should be one of'):
_ = PoseTrack18Metric(ann_file=self.ann_file, score_mode='invalid')
# test nms_mode option
with self.assertRaisesRegex(ValueError, '`nms_mode` should be one of'):
_ = PoseTrack18Metric(ann_file=self.ann_file, nms_mode='invalid')
# test `format_only` option
with self.assertRaisesRegex(
AssertionError,
'`outfile_prefix` can not be None when `format_only` is True'):
_ = PoseTrack18Metric(
ann_file=self.ann_file, format_only=True, outfile_prefix=None)
def test_topdown_evaluate(self):
"""test topdown-style posetrack18 metric evaluation."""
# case 1: score_mode='bbox', nms_mode='none'
posetrack18_metric = PoseTrack18Metric(
ann_file=self.ann_file,
outfile_prefix=f'{self.tmp_dir.name}/test',
score_mode='bbox',
nms_mode='none')
posetrack18_metric.dataset_meta = self.posetrack18_dataset_meta
# process samples
for data_batch, data_samples in self.topdown_data:
posetrack18_metric.process(data_batch, data_samples)
eval_results = posetrack18_metric.evaluate(size=len(self.topdown_data))
self.assertDictEqual(eval_results, self.target)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, '003418_mpii_test.json')))
# case 2: score_mode='bbox_keypoint', nms_mode='oks_nms'
posetrack18_metric = PoseTrack18Metric(
ann_file=self.ann_file,
outfile_prefix=f'{self.tmp_dir.name}/test',
score_mode='bbox_keypoint',
nms_mode='oks_nms')
posetrack18_metric.dataset_meta = self.posetrack18_dataset_meta
# process samples
for data_batch, data_samples in self.topdown_data:
posetrack18_metric.process(data_batch, data_samples)
eval_results = posetrack18_metric.evaluate(size=len(self.topdown_data))
self.assertDictEqual(eval_results, self.target)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, '009473_mpii_test.json')))
# case 3: score_mode='bbox_keypoint', nms_mode='soft_oks_nms'
posetrack18_metric = PoseTrack18Metric(
ann_file=self.ann_file,
outfile_prefix=f'{self.tmp_dir.name}/test',
score_mode='bbox_keypoint',
nms_mode='soft_oks_nms')
posetrack18_metric.dataset_meta = self.posetrack18_dataset_meta
# process samples
for data_batch, data_samples in self.topdown_data:
posetrack18_metric.process(data_batch, data_samples)
eval_results = posetrack18_metric.evaluate(size=len(self.topdown_data))
self.assertDictEqual(eval_results, self.target)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, '012834_mpii_test.json')))
def test_bottomup_evaluate(self):
"""test bottomup-style posetrack18 metric evaluation."""
# case 1: score_mode='bbox', nms_mode='none'
posetrack18_metric = PoseTrack18Metric(
ann_file=self.ann_file, outfile_prefix=f'{self.tmp_dir.name}/test')
posetrack18_metric.dataset_meta = self.posetrack18_dataset_meta
# process samples
for data_batch, data_samples in self.bottomup_data:
posetrack18_metric.process(data_batch, data_samples)
eval_results = posetrack18_metric.evaluate(
size=len(self.bottomup_data))
self.assertDictEqual(eval_results, self.target)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, '009473_mpii_test.json')))
def test_other_methods(self):
"""test other useful methods."""
# test `_sort_and_unique_bboxes` method
posetrack18_metric = PoseTrack18Metric(ann_file=self.ann_file)
posetrack18_metric.dataset_meta = self.posetrack18_dataset_meta
# process samples
for data_batch, data_samples in self.topdown_data:
posetrack18_metric.process(data_batch, data_samples)
# process one extra sample
data_batch, data_samples = self.topdown_data[0]
posetrack18_metric.process(data_batch, data_samples)
# an extra sample
eval_results = posetrack18_metric.evaluate(
size=len(self.topdown_data) + 1)
self.assertDictEqual(eval_results, self.target)
def test_format_only(self):
"""test `format_only` option."""
posetrack18_metric = PoseTrack18Metric(
ann_file=self.ann_file,
format_only=True,
outfile_prefix=f'{self.tmp_dir.name}/test')
posetrack18_metric.dataset_meta = self.posetrack18_dataset_meta
# process samples
for data_batch, data_samples in self.topdown_data:
posetrack18_metric.process(data_batch, data_samples)
eval_results = posetrack18_metric.evaluate(size=len(self.topdown_data))
self.assertDictEqual(eval_results, {})
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, '012834_mpii_test.json')))
# test when gt annotations are absent
db_ = load(self.ann_file)
del db_['annotations']
tmp_ann_file = osp.join(self.tmp_dir.name, 'temp_ann.json')
dump(db_, tmp_ann_file, sort_keys=True, indent=4)
with self.assertRaisesRegex(
AssertionError,
'Ground truth annotations are required for evaluation'):
_ = PoseTrack18Metric(ann_file=tmp_ann_file, format_only=False)
def test_topdown_alignment(self):
"""Test whether the output of PoseTrack18Metric and the original
TopDownPoseTrack18Dataset are the same."""
self.skipTest('Skip test.')
topdown_data = []
for ann in self.db['annotations']:
w, h = ann['bbox'][2], ann['bbox'][3]
bboxes = np.array(ann['bbox'], dtype=np.float32).reshape(-1, 4)
bbox_scales = np.array([w * 1.25, h * 1.25]).reshape(-1, 2)
keypoints = np.array(
ann['keypoints'], dtype=np.float32).reshape(1, 17, 3)
keypoints[..., 0] = keypoints[..., 0] * 0.98
keypoints[..., 1] = keypoints[..., 1] * 1.02
keypoints[..., 2] = keypoints[..., 2] * 0.8
gt_instances = {
'bbox_scales': bbox_scales,
'bbox_scores': np.ones((1, ), dtype=np.float32) * 0.98,
'bboxes': bboxes,
}
pred_instances = {
'keypoints': keypoints[..., :2],
'keypoint_scores': keypoints[..., -1],
}
data = {'inputs': None}
data_sample = {
'id': ann['id'],
'img_id': ann['image_id'],
'gt_instances': gt_instances,
'pred_instances': pred_instances
}
# batch size = 1
data_batch = [data]
data_samples = [data_sample]
topdown_data.append((data_batch, data_samples))
# case 1:
# typical setting: score_mode='bbox_keypoint', nms_mode='oks_nms'
posetrack18_metric = PoseTrack18Metric(
ann_file=self.ann_file,
outfile_prefix=f'{self.tmp_dir.name}/test',
score_mode='bbox_keypoint',
nms_mode='oks_nms')
posetrack18_metric.dataset_meta = self.posetrack18_dataset_meta
# process samples
for data_batch, data_samples in topdown_data:
posetrack18_metric.process(data_batch, data_samples)
eval_results = posetrack18_metric.evaluate(size=len(topdown_data))
target = {
'posetrack18/Head AP': 84.6677132391418,
'posetrack18/Shou AP': 80.86734693877551,
'posetrack18/Elb AP': 83.0204081632653,
'posetrack18/Wri AP': 85.12396694214877,
'posetrack18/Hip AP': 75.14792899408285,
'posetrack18/Knee AP': 66.76515151515152,
'posetrack18/Ankl AP': 71.78571428571428,
'posetrack18/Total AP': 78.62827822638012,
}
for key in eval_results.keys():
self.assertAlmostEqual(eval_results[key], target[key])
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, '012834_mpii_test.json')))
topdown_data = []
anns = self.db['annotations']
for i, ann in enumerate(anns):
w, h = ann['bbox'][2], ann['bbox'][3]
bboxes = np.array(ann['bbox'], dtype=np.float32).reshape(-1, 4)
bbox_scales = np.array([w * 1.25, h * 1.25]).reshape(-1, 2)
keypoints = np.array(
ann['keypoints'], dtype=np.float32).reshape(1, -1, 3)
keypoints[..., 0] = keypoints[..., 0] * (1 - i / 100)
keypoints[..., 1] = keypoints[..., 1] * (1 + i / 100)
keypoints[..., 2] = keypoints[..., 2] * (1 - i / 100)
gt_instances0 = {
'bbox_scales': bbox_scales,
'bbox_scores': np.ones((1, ), dtype=np.float32),
'bboxes': bboxes,
}
pred_instances0 = {
'keypoints': keypoints[..., :2],
'keypoint_scores': keypoints[..., -1],
}
data0 = {'inputs': None}
data_sample0 = {
'id': ann['id'],
'img_id': ann['image_id'],
'gt_instances': gt_instances0,
'pred_instances': pred_instances0
}
keypoints = np.array(
ann['keypoints'], dtype=np.float32).reshape(1, -1, 3)
keypoints[..., 0] = keypoints[..., 0] * (1 + i / 100)
keypoints[..., 1] = keypoints[..., 1] * (1 - i / 100)
keypoints[..., 2] = keypoints[..., 2] * (1 - 2 * i / 100)
gt_instances1 = {
'bbox_scales': bbox_scales,
'bboxes': bboxes,
'bbox_scores': np.ones(
(1, ), dtype=np.float32) * (1 - 2 * i / 100)
}
pred_instances1 = {
'keypoints': keypoints[..., :2],
'keypoint_scores': keypoints[..., -1],
}
data1 = {'inputs': None}
data_sample1 = {
'id': ann['id'] + 1,
'img_id': ann['image_id'],
'gt_instances': gt_instances1,
'pred_instances': pred_instances1
}
# batch size = 2
data_batch = [data0, data1]
data_samples = [data_sample0, data_sample1]
topdown_data.append((data_batch, data_samples))
# case 3: score_mode='bbox_keypoint', nms_mode='soft_oks_nms'
posetrack18_metric = PoseTrack18Metric(
ann_file=self.ann_file,
outfile_prefix=f'{self.tmp_dir.name}/test',
score_mode='bbox_keypoint',
keypoint_score_thr=0.2,
nms_thr=0.9,
nms_mode='soft_oks_nms')
posetrack18_metric.dataset_meta = self.posetrack18_dataset_meta
# process samples
for data_batch, data_samples in topdown_data:
posetrack18_metric.process(data_batch, data_samples)
eval_results = posetrack18_metric.evaluate(size=len(topdown_data) * 2)
target = {
'posetrack18/Head AP': 27.1062271062271068,
'posetrack18/Shou AP': 25.918367346938776,
'posetrack18/Elb AP': 22.67857142857143,
'posetrack18/Wri AP': 29.090909090909093,
'posetrack18/Hip AP': 18.40659340659341,
'posetrack18/Knee AP': 32.0,
'posetrack18/Ankl AP': 20.0,
'posetrack18/Total AP': 25.167170924313783,
}
for key in eval_results.keys():
self.assertAlmostEqual(eval_results[key], target[key])
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, '009473_mpii_test.json')))