mmpose/tests/test_evaluation/test_metrics/test_coco_wholebody_metric.py

303 lines
12 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
import tempfile
from collections import defaultdict
from unittest import TestCase
import numpy as np
from mmengine.fileio import dump, load
from mmengine.logging import MessageHub
from xtcocotools.coco import COCO
from mmpose.datasets.datasets.utils import parse_pose_metainfo
from mmpose.evaluation.metrics import CocoWholeBodyMetric
class TestCocoWholeBodyMetric(TestCase):
def setUp(self):
"""Setup some variables which are used in every test method.
TestCase calls functions in this order: setUp() -> testMethod() ->
tearDown() -> cleanUp()
"""
# during CI on github, the unit tests for datasets will save ann_file
# into MessageHub, which will influence the unit tests for
# CocoWholeBodyMetric
msg = MessageHub.get_current_instance()
msg.runtime_info.clear()
self.tmp_dir = tempfile.TemporaryDirectory()
self.ann_file_coco = 'tests/data/coco/test_coco_wholebody.json'
meta_info_coco = dict(
from_file='configs/_base_/datasets/coco_wholebody.py')
self.dataset_meta_coco = parse_pose_metainfo(meta_info_coco)
self.coco = COCO(self.ann_file_coco)
self.dataset_meta_coco['CLASSES'] = self.coco.loadCats(
self.coco.getCatIds())
self.topdown_data_coco = self._convert_ann_to_topdown_batch_data(
self.ann_file_coco)
assert len(self.topdown_data_coco) == 14
self.bottomup_data_coco = self._convert_ann_to_bottomup_batch_data(
self.ann_file_coco)
assert len(self.bottomup_data_coco) == 4
self.target_coco = {
'coco-wholebody/AP': 1.0,
'coco-wholebody/AP .5': 1.0,
'coco-wholebody/AP .75': 1.0,
'coco-wholebody/AP (M)': 1.0,
'coco-wholebody/AP (L)': 1.0,
'coco-wholebody/AR': 1.0,
'coco-wholebody/AR .5': 1.0,
'coco-wholebody/AR .75': 1.0,
'coco-wholebody/AR (M)': 1.0,
'coco-wholebody/AR (L)': 1.0,
}
def _convert_ann_to_topdown_batch_data(self, ann_file):
"""Convert annotations to topdown-style batch data."""
topdown_data = []
db = load(ann_file)
imgid2info = dict()
for img in db['images']:
imgid2info[img['id']] = img
for ann in db['annotations']:
w, h = ann['bbox'][2], ann['bbox'][3]
bboxes = np.array(ann['bbox'], dtype=np.float32).reshape(-1, 4)
bbox_scales = np.array([w * 1.25, h * 1.25]).reshape(-1, 2)
_keypoints = np.array(ann['keypoints'] + ann['foot_kpts'] +
ann['face_kpts'] + ann['lefthand_kpts'] +
ann['righthand_kpts']).reshape(1, -1, 3)
gt_instances = {
'bbox_scales': bbox_scales,
'bbox_scores': np.ones((1, ), dtype=np.float32),
'bboxes': bboxes,
}
pred_instances = {
'keypoints': _keypoints[..., :2],
'keypoint_scores': _keypoints[..., -1],
}
data = {'inputs': None}
data_sample = {
'id': ann['id'],
'img_id': ann['image_id'],
'category_id': ann.get('category_id', 1),
'gt_instances': gt_instances,
'pred_instances': pred_instances,
# dummy image_shape for testing
'ori_shape': [640, 480],
# store the raw annotation info to test without ann_file
'raw_ann_info': copy.deepcopy(ann),
}
# batch size = 1
data_batch = [data]
data_samples = [data_sample]
topdown_data.append((data_batch, data_samples))
return topdown_data
def _convert_ann_to_bottomup_batch_data(self, ann_file):
"""Convert annotations to bottomup-style batch data."""
img2ann = defaultdict(list)
db = load(ann_file)
for ann in db['annotations']:
img2ann[ann['image_id']].append(ann)
bottomup_data = []
for img_id, anns in img2ann.items():
_keypoints = []
for ann in anns:
_keypoints.append(ann['keypoints'] + ann['foot_kpts'] +
ann['face_kpts'] + ann['lefthand_kpts'] +
ann['righthand_kpts'])
keypoints = np.array(_keypoints).reshape((len(anns), -1, 3))
gt_instances = {
'bbox_scores': np.ones((len(anns)), dtype=np.float32)
}
pred_instances = {
'keypoints': keypoints[..., :2],
'keypoint_scores': keypoints[..., -1],
}
data = {'inputs': None}
data_sample = {
'id': [ann['id'] for ann in anns],
'img_id': img_id,
'gt_instances': gt_instances,
'pred_instances': pred_instances
}
# batch size = 1
data_batch = [data]
data_samples = [data_sample]
bottomup_data.append((data_batch, data_samples))
return bottomup_data
def tearDown(self):
self.tmp_dir.cleanup()
def test_init(self):
"""test metric init method."""
# test score_mode option
with self.assertRaisesRegex(ValueError,
'`score_mode` should be one of'):
_ = CocoWholeBodyMetric(
ann_file=self.ann_file_coco, score_mode='invalid')
# test nms_mode option
with self.assertRaisesRegex(ValueError, '`nms_mode` should be one of'):
_ = CocoWholeBodyMetric(
ann_file=self.ann_file_coco, nms_mode='invalid')
# test format_only option
with self.assertRaisesRegex(
AssertionError,
'`outfile_prefix` can not be None when `format_only` is True'):
_ = CocoWholeBodyMetric(
ann_file=self.ann_file_coco,
format_only=True,
outfile_prefix=None)
def test_other_methods(self):
"""test other useful methods."""
# test `_sort_and_unique_bboxes` method
metric_coco = CocoWholeBodyMetric(
ann_file=self.ann_file_coco, score_mode='bbox', nms_mode='none')
metric_coco.dataset_meta = self.dataset_meta_coco
# process samples
for data_batch, data_samples in self.topdown_data_coco:
metric_coco.process(data_batch, data_samples)
# process one extra sample
data_batch, data_samples = self.topdown_data_coco[0]
metric_coco.process(data_batch, data_samples)
# an extra sample
eval_results = metric_coco.evaluate(
size=len(self.topdown_data_coco) + 1)
self.assertDictEqual(eval_results, self.target_coco)
def test_format_only(self):
"""test `format_only` option."""
metric_coco = CocoWholeBodyMetric(
ann_file=self.ann_file_coco,
format_only=True,
outfile_prefix=f'{self.tmp_dir.name}/test',
score_mode='bbox_keypoint',
nms_mode='oks_nms')
metric_coco.dataset_meta = self.dataset_meta_coco
# process one sample
data_batch, data_samples = self.topdown_data_coco[0]
metric_coco.process(data_batch, data_samples)
eval_results = metric_coco.evaluate(size=1)
self.assertDictEqual(eval_results, {})
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test.keypoints.json')))
# test when gt annotations are absent
db_ = load(self.ann_file_coco)
del db_['annotations']
tmp_ann_file = osp.join(self.tmp_dir.name, 'temp_ann.json')
dump(db_, tmp_ann_file, sort_keys=True, indent=4)
with self.assertRaisesRegex(
AssertionError,
'Ground truth annotations are required for evaluation'):
_ = CocoWholeBodyMetric(ann_file=tmp_ann_file, format_only=False)
def test_bottomup_evaluate(self):
"""test bottomup-style COCO metric evaluation."""
# case1: score_mode='bbox', nms_mode='none'
metric_coco = CocoWholeBodyMetric(
ann_file=self.ann_file_coco,
outfile_prefix=f'{self.tmp_dir.name}/test',
score_mode='bbox',
nms_mode='none')
metric_coco.dataset_meta = self.dataset_meta_coco
# process samples
for data_batch, data_samples in self.bottomup_data_coco:
metric_coco.process(data_batch, data_samples)
eval_results = metric_coco.evaluate(size=len(self.bottomup_data_coco))
self.assertDictEqual(eval_results, self.target_coco)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test.keypoints.json')))
def test_topdown_evaluate(self):
"""test topdown-style COCO metric evaluation."""
# case 1: score_mode='bbox', nms_mode='none'
metric_coco = CocoWholeBodyMetric(
ann_file=self.ann_file_coco,
outfile_prefix=f'{self.tmp_dir.name}/test1',
score_mode='bbox',
nms_mode='none')
metric_coco.dataset_meta = self.dataset_meta_coco
# process samples
for data_batch, data_samples in self.topdown_data_coco:
metric_coco.process(data_batch, data_samples)
eval_results = metric_coco.evaluate(size=len(self.topdown_data_coco))
self.assertDictEqual(eval_results, self.target_coco)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test1.keypoints.json')))
# case 2: score_mode='bbox_keypoint', nms_mode='oks_nms'
metric_coco = CocoWholeBodyMetric(
ann_file=self.ann_file_coco,
outfile_prefix=f'{self.tmp_dir.name}/test2',
score_mode='bbox_keypoint',
nms_mode='oks_nms')
metric_coco.dataset_meta = self.dataset_meta_coco
# process samples
for data_batch, data_samples in self.topdown_data_coco:
metric_coco.process(data_batch, data_samples)
eval_results = metric_coco.evaluate(size=len(self.topdown_data_coco))
self.assertDictEqual(eval_results, self.target_coco)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test2.keypoints.json')))
# case 3: score_mode='bbox_rle', nms_mode='soft_oks_nms'
metric_coco = CocoWholeBodyMetric(
ann_file=self.ann_file_coco,
outfile_prefix=f'{self.tmp_dir.name}/test3',
score_mode='bbox_rle',
nms_mode='soft_oks_nms')
metric_coco.dataset_meta = self.dataset_meta_coco
# process samples
for data_batch, data_samples in self.topdown_data_coco:
metric_coco.process(data_batch, data_samples)
eval_results = metric_coco.evaluate(size=len(self.topdown_data_coco))
self.assertDictEqual(eval_results, self.target_coco)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test3.keypoints.json')))
# case 4: test without providing ann_file
metric_coco = CocoWholeBodyMetric(
outfile_prefix=f'{self.tmp_dir.name}/test4')
metric_coco.dataset_meta = self.dataset_meta_coco
# process samples
for data_batch, data_samples in self.topdown_data_coco:
metric_coco.process(data_batch, data_samples)
eval_results = metric_coco.evaluate(size=len(self.topdown_data_coco))
self.assertDictEqual(eval_results, self.target_coco)
# test whether convert the annotation to COCO format
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test4.gt.json')))
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test4.keypoints.json')))