mmpose/tests/test_evaluation/test_functional/test_keypoint_eval.py

213 lines
7.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import numpy as np
from numpy.testing import assert_array_almost_equal
from mmpose.evaluation.functional import (keypoint_auc, keypoint_epe,
keypoint_mpjpe, keypoint_nme,
keypoint_pck_accuracy,
multilabel_classification_accuracy,
pose_pck_accuracy)
class TestKeypointEval(TestCase):
def test_keypoint_pck_accuracy(self):
output = np.zeros((2, 5, 2))
target = np.zeros((2, 5, 2))
mask = np.array([[True, True, False, True, True],
[True, True, False, True, True]])
# first channel
output[0, 0] = [10, 0]
target[0, 0] = [10, 0]
# second channel
output[0, 1] = [20, 20]
target[0, 1] = [10, 10]
# third channel
output[0, 2] = [0, 0]
target[0, 2] = [-1, 0]
# fourth channel
output[0, 3] = [30, 30]
target[0, 3] = [30, 30]
# fifth channel
output[0, 4] = [0, 10]
target[0, 4] = [0, 10]
thr = np.full((2, 2), 10, dtype=np.float32)
acc, avg_acc, cnt = keypoint_pck_accuracy(output, target, mask, 0.5,
thr)
assert_array_almost_equal(acc, np.array([1, 0.5, -1, 1, 1]), decimal=4)
self.assertAlmostEqual(avg_acc, 0.875, delta=1e-4)
self.assertAlmostEqual(cnt, 4, delta=1e-4)
acc, avg_acc, cnt = keypoint_pck_accuracy(output, target, mask, 0.5,
np.zeros((2, 2)))
assert_array_almost_equal(
acc, np.array([-1, -1, -1, -1, -1]), decimal=4)
self.assertAlmostEqual(avg_acc, 0, delta=1e-4)
self.assertAlmostEqual(cnt, 0, delta=1e-4)
acc, avg_acc, cnt = keypoint_pck_accuracy(output, target, mask, 0.5,
np.array([[0, 0], [10, 10]]))
assert_array_almost_equal(acc, np.array([1, 1, -1, 1, 1]), decimal=4)
self.assertAlmostEqual(avg_acc, 1, delta=1e-4)
self.assertAlmostEqual(cnt, 4, delta=1e-4)
def test_keypoint_auc(self):
output = np.zeros((1, 5, 2))
target = np.zeros((1, 5, 2))
mask = np.array([[True, True, False, True, True]])
# first channel
output[0, 0] = [10, 4]
target[0, 0] = [10, 0]
# second channel
output[0, 1] = [10, 18]
target[0, 1] = [10, 10]
# third channel
output[0, 2] = [0, 0]
target[0, 2] = [0, -1]
# fourth channel
output[0, 3] = [40, 40]
target[0, 3] = [30, 30]
# fifth channel
output[0, 4] = [20, 10]
target[0, 4] = [0, 10]
auc = keypoint_auc(output, target, mask, 20, 4)
self.assertAlmostEqual(auc, 0.375, delta=1e-4)
def test_keypoint_epe(self):
output = np.zeros((1, 5, 2))
target = np.zeros((1, 5, 2))
mask = np.array([[True, True, False, True, True]])
# first channel
output[0, 0] = [10, 4]
target[0, 0] = [10, 0]
# second channel
output[0, 1] = [10, 18]
target[0, 1] = [10, 10]
# third channel
output[0, 2] = [0, 0]
target[0, 2] = [-1, -1]
# fourth channel
output[0, 3] = [40, 40]
target[0, 3] = [30, 30]
# fifth channel
output[0, 4] = [20, 10]
target[0, 4] = [0, 10]
epe = keypoint_epe(output, target, mask)
self.assertAlmostEqual(epe, 11.5355339, delta=1e-4)
def test_keypoint_nme(self):
output = np.zeros((1, 5, 2))
target = np.zeros((1, 5, 2))
mask = np.array([[True, True, False, True, True]])
# first channel
output[0, 0] = [10, 4]
target[0, 0] = [10, 0]
# second channel
output[0, 1] = [10, 18]
target[0, 1] = [10, 10]
# third channel
output[0, 2] = [0, 0]
target[0, 2] = [-1, -1]
# fourth channel
output[0, 3] = [40, 40]
target[0, 3] = [30, 30]
# fifth channel
output[0, 4] = [20, 10]
target[0, 4] = [0, 10]
normalize_factor = np.ones((output.shape[0], output.shape[2]))
nme = keypoint_nme(output, target, mask, normalize_factor)
self.assertAlmostEqual(nme, 11.5355339, delta=1e-4)
def test_pose_pck_accuracy(self):
output = np.zeros((1, 5, 64, 64), dtype=np.float32)
target = np.zeros((1, 5, 64, 64), dtype=np.float32)
mask = np.array([[True, True, False, False, False]])
# first channel
output[0, 0, 20, 20] = 1
target[0, 0, 10, 10] = 1
# second channel
output[0, 1, 30, 30] = 1
target[0, 1, 30, 30] = 1
acc, avg_acc, cnt = pose_pck_accuracy(output, target, mask)
assert_array_almost_equal(acc, np.array([0, 1, -1, -1, -1]), decimal=4)
self.assertAlmostEqual(avg_acc, 0.5, delta=1e-4)
self.assertAlmostEqual(cnt, 2, delta=1e-4)
def test_multilabel_classification_accuracy(self):
output = np.array([[0.7, 0.8, 0.4], [0.8, 0.1, 0.1]])
target = np.array([[1, 0, 0], [1, 0, 1]])
mask = np.array([[True, True, True], [True, True, True]])
thr = 0.5
acc = multilabel_classification_accuracy(output, target, mask, thr)
self.assertEqual(acc, 0)
output = np.array([[0.7, 0.2, 0.4], [0.8, 0.1, 0.9]])
thr = 0.5
acc = multilabel_classification_accuracy(output, target, mask, thr)
self.assertEqual(acc, 1)
thr = 0.3
acc = multilabel_classification_accuracy(output, target, mask, thr)
self.assertEqual(acc, 0.5)
mask = np.array([[True, True, False], [True, True, True]])
acc = multilabel_classification_accuracy(output, target, mask, thr)
self.assertEqual(acc, 1)
def test_keypoint_mpjpe(self):
output = np.zeros((2, 5, 3))
target = np.zeros((2, 5, 3))
mask = np.array([[True, True, False, True, True],
[True, True, False, True, True]])
# first channel
output[0, 0] = [1, 0, 0]
target[0, 0] = [1, 0, 0]
output[1, 0] = [1, 0, 0]
target[1, 0] = [1, 1, 0]
# second channel
output[0, 1] = [2, 2, 0]
target[0, 1] = [1, 1, 1]
output[1, 1] = [2, 2, 1]
target[1, 1] = [1, 0, 1]
# third channel
output[0, 2] = [0, 0, -1]
target[0, 2] = [-1, 0, 0]
output[1, 2] = [-1, 0, 0]
target[1, 2] = [-1, 0, 0]
# fourth channel
output[0, 3] = [3, 3, 1]
target[0, 3] = [3, 3, 1]
output[1, 3] = [0, 0, 3]
target[1, 3] = [0, 0, 3]
# fifth channel
output[0, 4] = [0, 1, 1]
target[0, 4] = [0, 1, 0]
output[1, 4] = [0, 0, 1]
target[1, 4] = [1, 1, 0]
mpjpe = keypoint_mpjpe(output, target, mask)
self.assertAlmostEqual(mpjpe, 0.9625211990796929, delta=1e-4)
p_mpjpe = keypoint_mpjpe(output, target, mask, 'procrustes')
self.assertAlmostEqual(p_mpjpe, 1.0047897634604497, delta=1e-4)
s_mpjpe = keypoint_mpjpe(output, target, mask, 'scale')
self.assertAlmostEqual(s_mpjpe, 1.0277129678465953, delta=1e-4)
with self.assertRaises(ValueError):
_ = keypoint_mpjpe(output, target, mask, 'alignment')