mirror of https://github.com/open-mmlab/mmpose
84 lines
2.9 KiB
Python
84 lines
2.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from unittest import TestCase
|
|
|
|
import numpy as np
|
|
|
|
from mmpose.codecs import IntegralRegressionLabel # noqa: F401
|
|
from mmpose.registry import KEYPOINT_CODECS
|
|
|
|
|
|
class TestRegressionLabel(TestCase):
|
|
|
|
# name and configs of all test cases
|
|
def setUp(self) -> None:
|
|
self.configs = [
|
|
(
|
|
'ipr',
|
|
dict(
|
|
type='IntegralRegressionLabel',
|
|
input_size=(192, 256),
|
|
heatmap_size=(48, 64),
|
|
sigma=2),
|
|
),
|
|
]
|
|
|
|
# The bbox is usually padded so the keypoint will not be near the
|
|
# boundary
|
|
keypoints = (0.1 + 0.8 * np.random.rand(1, 17, 2)) * [192, 256]
|
|
keypoints = np.round(keypoints).astype(np.float32)
|
|
heatmaps = np.random.rand(17, 64, 48).astype(np.float32)
|
|
encoded_wo_sigma = np.random.rand(1, 17, 2)
|
|
keypoints_visible = np.ones((1, 17), dtype=np.float32)
|
|
self.data = dict(
|
|
keypoints=keypoints,
|
|
keypoints_visible=keypoints_visible,
|
|
heatmaps=heatmaps,
|
|
encoded_wo_sigma=encoded_wo_sigma)
|
|
|
|
def test_encode(self):
|
|
keypoints = self.data['keypoints']
|
|
keypoints_visible = self.data['keypoints_visible']
|
|
|
|
for name, cfg in self.configs:
|
|
codec = KEYPOINT_CODECS.build(cfg)
|
|
|
|
encoded = codec.encode(keypoints, keypoints_visible)
|
|
heatmaps = encoded['heatmaps']
|
|
keypoint_labels = encoded['keypoint_labels']
|
|
keypoint_weights = encoded['keypoint_weights']
|
|
|
|
self.assertEqual(heatmaps.shape, (17, 64, 48),
|
|
f'Failed case: "{name}"')
|
|
self.assertEqual(keypoint_labels.shape, (1, 17, 2),
|
|
f'Failed case: "{name}"')
|
|
self.assertEqual(keypoint_weights.shape, (1, 17),
|
|
f'Failed case: "{name}"')
|
|
|
|
def test_decode(self):
|
|
encoded_wo_sigma = self.data['encoded_wo_sigma']
|
|
|
|
for name, cfg in self.configs:
|
|
codec = KEYPOINT_CODECS.build(cfg)
|
|
|
|
keypoints, scores = codec.decode(encoded_wo_sigma)
|
|
|
|
self.assertEqual(keypoints.shape, (1, 17, 2),
|
|
f'Failed case: "{name}"')
|
|
self.assertEqual(scores.shape, (1, 17), f'Failed case: "{name}"')
|
|
|
|
def test_cicular_verification(self):
|
|
keypoints = self.data['keypoints']
|
|
keypoints_visible = self.data['keypoints_visible']
|
|
|
|
for name, cfg in self.configs:
|
|
codec = KEYPOINT_CODECS.build(cfg)
|
|
|
|
encoded = codec.encode(keypoints, keypoints_visible)
|
|
keypoint_labels = encoded['keypoint_labels']
|
|
|
|
_keypoints, _ = codec.decode(keypoint_labels)
|
|
|
|
self.assertTrue(
|
|
np.allclose(keypoints, _keypoints, atol=5.),
|
|
f'Failed case: "{name}"')
|