mmpose/tests/test_codecs/test_image_pose_lifting.py

168 lines
6.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import numpy as np
from mmpose.codecs import ImagePoseLifting
from mmpose.registry import KEYPOINT_CODECS
class TestImagePoseLifting(TestCase):
def setUp(self) -> None:
keypoints = (0.1 + 0.8 * np.random.rand(1, 17, 2)) * [192, 256]
keypoints = np.round(keypoints).astype(np.float32)
keypoints_visible = np.random.randint(2, size=(1, 17))
lifting_target = (0.1 + 0.8 * np.random.rand(1, 17, 3))
lifting_target_visible = np.random.randint(
2, size=(
1,
17,
))
encoded_wo_sigma = np.random.rand(1, 17, 3)
self.keypoints_mean = np.random.rand(17, 2).astype(np.float32)
self.keypoints_std = np.random.rand(17, 2).astype(np.float32) + 1e-6
self.target_mean = np.random.rand(1, 17, 3).astype(np.float32)
self.target_std = np.random.rand(1, 17, 3).astype(np.float32) + 1e-6
self.data = dict(
keypoints=keypoints,
keypoints_visible=keypoints_visible,
lifting_target=lifting_target,
lifting_target_visible=lifting_target_visible,
encoded_wo_sigma=encoded_wo_sigma)
def build_pose_lifting_label(self, **kwargs):
cfg = dict(
type='ImagePoseLifting',
num_keypoints=17,
root_index=0,
reshape_keypoints=False)
cfg.update(kwargs)
return KEYPOINT_CODECS.build(cfg)
def test_build(self):
codec = self.build_pose_lifting_label()
self.assertIsInstance(codec, ImagePoseLifting)
def test_encode(self):
keypoints = self.data['keypoints']
keypoints_visible = self.data['keypoints_visible']
lifting_target = self.data['lifting_target']
lifting_target_visible = self.data['lifting_target_visible']
# test default settings
codec = self.build_pose_lifting_label()
encoded = codec.encode(keypoints, keypoints_visible, lifting_target,
lifting_target_visible)
self.assertEqual(encoded['keypoint_labels'].shape, (1, 17, 2))
self.assertEqual(encoded['lifting_target_label'].shape, (1, 17, 3))
self.assertEqual(encoded['lifting_target_weight'].shape, (
1,
17,
))
self.assertEqual(encoded['trajectory_weights'].shape, (
1,
17,
))
self.assertEqual(encoded['target_root'].shape, (
1,
3,
))
# test removing root
codec = self.build_pose_lifting_label(
remove_root=True, save_index=True)
encoded = codec.encode(keypoints, keypoints_visible, lifting_target,
lifting_target_visible)
self.assertTrue('target_root_removed' in encoded
and 'target_root_index' in encoded)
self.assertEqual(encoded['lifting_target_weight'].shape, (
1,
16,
))
self.assertEqual(encoded['keypoint_labels'].shape, (1, 17, 2))
self.assertEqual(encoded['lifting_target_label'].shape, (1, 16, 3))
self.assertEqual(encoded['target_root'].shape, (
1,
3,
))
# test normalization
codec = self.build_pose_lifting_label(
keypoints_mean=self.keypoints_mean,
keypoints_std=self.keypoints_std,
target_mean=self.target_mean,
target_std=self.target_std)
encoded = codec.encode(keypoints, keypoints_visible, lifting_target,
lifting_target_visible)
self.assertEqual(encoded['keypoint_labels'].shape, (1, 17, 2))
self.assertEqual(encoded['lifting_target_label'].shape, (1, 17, 3))
def test_decode(self):
lifting_target = self.data['lifting_target']
encoded_wo_sigma = self.data['encoded_wo_sigma']
codec = self.build_pose_lifting_label()
decoded, scores = codec.decode(
encoded_wo_sigma, target_root=lifting_target[..., 0, :])
self.assertEqual(decoded.shape, (1, 17, 3))
self.assertEqual(scores.shape, (1, 17))
codec = self.build_pose_lifting_label(remove_root=True)
decoded, scores = codec.decode(
encoded_wo_sigma, target_root=lifting_target[..., 0, :])
self.assertEqual(decoded.shape, (1, 18, 3))
self.assertEqual(scores.shape, (1, 18))
def test_cicular_verification(self):
keypoints = self.data['keypoints']
keypoints_visible = self.data['keypoints_visible']
lifting_target = self.data['lifting_target']
lifting_target_visible = self.data['lifting_target_visible']
# test default settings
codec = self.build_pose_lifting_label()
encoded = codec.encode(keypoints, keypoints_visible, lifting_target,
lifting_target_visible)
_keypoints, _ = codec.decode(
encoded['lifting_target_label'],
target_root=lifting_target[..., 0, :])
self.assertTrue(np.allclose(lifting_target, _keypoints, atol=5.))
# test removing root
codec = self.build_pose_lifting_label(remove_root=True)
encoded = codec.encode(keypoints, keypoints_visible, lifting_target,
lifting_target_visible)
_keypoints, _ = codec.decode(
encoded['lifting_target_label'],
target_root=lifting_target[..., 0, :])
self.assertTrue(np.allclose(lifting_target, _keypoints, atol=5.))
# test normalization
codec = self.build_pose_lifting_label(
keypoints_mean=self.keypoints_mean,
keypoints_std=self.keypoints_std,
target_mean=self.target_mean,
target_std=self.target_std)
encoded = codec.encode(keypoints, keypoints_visible, lifting_target,
lifting_target_visible)
_keypoints, _ = codec.decode(
encoded['lifting_target_label'],
target_root=lifting_target[..., 0, :])
self.assertTrue(np.allclose(lifting_target, _keypoints, atol=5.))