mmpose/projects/yolox_pose/configs/yolox-pose_tiny_4xb64-300e_...

68 lines
2.0 KiB
Python

_base_ = ['./yolox-pose_s_8xb32-300e_coco.py']
# model settings
model = dict(
init_cfg=dict(checkpoint='https://download.openmmlab.com/mmyolo/v0/yolox/'
'yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco/yolox_tiny_fast_'
'8xb32-300e-rtmdet-hyp_coco_20230210_143637-4c338102.pth'),
data_preprocessor=dict(batch_augments=[
dict(
type='PoseBatchSyncRandomResize',
random_size_range=(320, 640),
size_divisor=32,
interval=1)
]),
backbone=dict(
deepen_factor=0.33,
widen_factor=0.375,
),
neck=dict(
deepen_factor=0.33,
widen_factor=0.375,
),
bbox_head=dict(head_module=dict(widen_factor=0.375)))
# data settings
img_scale = _base_.img_scale
pre_transform = _base_.pre_transform
train_pipeline_stage1 = [
*pre_transform,
dict(
type='Mosaic',
img_scale=(img_scale),
pad_val=114.0,
pre_transform=pre_transform),
dict(
type='mmdet.RandomAffine',
scaling_ratio_range=(0.75, 1.0),
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
dict(type='mmdet.YOLOXHSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='FilterDetPoseAnnotations',
min_gt_bbox_wh=(1, 1),
keep_empty=False),
dict(
type='PackDetPoseInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape'))
]
test_pipeline = [
*pre_transform,
dict(type='mmdet.Resize', scale=(416, 416), keep_ratio=True),
dict(
type='mmdet.Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(
type='PackDetPoseInputs',
meta_keys=('id', 'img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip_indices'))
]
train_dataloader = dict(
batch_size=64, dataset=dict(pipeline=train_pipeline_stage1))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader