mmpose/projects/rtmpose3d/demo/body3d_img2pose_demo.py

438 lines
16 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import logging
import mimetypes
import os
import time
from argparse import ArgumentParser
from typing import List
import cv2
import json_tricks as json
import mmcv
import mmengine
import numpy as np
from mmengine.logging import print_log
from mmpose.apis import inference_topdown, init_model
from mmpose.registry import VISUALIZERS
from mmpose.structures import (PoseDataSample, merge_data_samples,
split_instances)
from mmpose.utils import adapt_mmdet_pipeline
from mmpose.visualization import Pose3dLocalVisualizer
try:
from mmdet.apis import inference_detector, init_detector
has_mmdet = True
except (ImportError, ModuleNotFoundError):
has_mmdet = False
from rtmpose3d import * # noqa: F401, F403
def parse_args():
parser = ArgumentParser()
parser.add_argument('det_config', help='Config file for detection')
parser.add_argument('det_checkpoint', help='Checkpoint file for detection')
parser.add_argument(
'pose3d_estimator_config',
type=str,
default=None,
help='Config file for the 3D pose estimator')
parser.add_argument(
'pose3d_estimator_checkpoint',
type=str,
default=None,
help='Checkpoint file for the 3D pose estimator')
parser.add_argument('--input', type=str, default='', help='Video path')
parser.add_argument(
'--show',
action='store_true',
default=False,
help='Whether to show visualizations')
parser.add_argument(
'--disable-rebase-keypoint',
action='store_true',
default=False,
help='Whether to disable rebasing the predicted 3D pose so its '
'lowest keypoint has a height of 0 (landing on the ground). Rebase '
'is useful for visualization when the model do not predict the '
'global position of the 3D pose.')
parser.add_argument(
'--disable-norm-pose-2d',
action='store_true',
default=False,
help='Whether to scale the bbox (along with the 2D pose) to the '
'average bbox scale of the dataset, and move the bbox (along with the '
'2D pose) to the average bbox center of the dataset. This is useful '
'when bbox is small, especially in multi-person scenarios.')
parser.add_argument(
'--num-instances',
type=int,
default=1,
help='The number of 3D poses to be visualized in every frame. If '
'less than 0, it will be set to the number of pose results in the '
'first frame.')
parser.add_argument(
'--output-root',
type=str,
default='',
help='Root of the output video file. '
'Default not saving the visualization video.')
parser.add_argument(
'--save-predictions',
action='store_true',
default=False,
help='Whether to save predicted results')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--det-cat-id',
type=int,
default=0,
help='Category id for bounding box detection model')
parser.add_argument(
'--bbox-thr',
type=float,
default=0.5,
help='Bounding box score threshold')
parser.add_argument('--kpt-thr', type=float, default=0.3)
parser.add_argument(
'--use-oks-tracking', action='store_true', help='Using OKS tracking')
parser.add_argument(
'--tracking-thr', type=float, default=0.3, help='Tracking threshold')
parser.add_argument(
'--show-interval', type=int, default=0, help='Sleep seconds per frame')
parser.add_argument(
'--thickness',
type=int,
default=1,
help='Link thickness for visualization')
parser.add_argument(
'--radius',
type=int,
default=3,
help='Keypoint radius for visualization')
parser.add_argument(
'--online',
action='store_true',
default=False,
help='Inference mode. If set to True, can not use future frame'
'information when using multi frames for inference in the 2D pose'
'detection stage. Default: False.')
args = parser.parse_args()
return args
def process_one_image(args, detector, frame: np.ndarray, frame_idx: int,
pose_estimator,
pose_est_results_last: List[PoseDataSample],
pose_est_results_list: List[List[PoseDataSample]],
next_id: int, visualize_frame: np.ndarray,
visualizer: Pose3dLocalVisualizer):
"""Visualize detected and predicted keypoints of one image.
Pipeline of this function:
frame
|
V
+-----------------+
| detector |
+-----------------+
| det_result
V
+-----------------+
| pose_estimator |
+-----------------+
| pose_est_results
V
+-----------------+
| post-processing |
+-----------------+
| pred_3d_data_samples
V
+------------+
| visualizer |
+------------+
Args:
args (Argument): Custom command-line arguments.
detector (mmdet.BaseDetector): The mmdet detector.
frame (np.ndarray): The image frame read from input image or video.
frame_idx (int): The index of current frame.
pose_estimator (TopdownPoseEstimator): The pose estimator for 2d pose.
pose_est_results_last (list(PoseDataSample)): The results of pose
estimation from the last frame for tracking instances.
pose_est_results_list (list(list(PoseDataSample))): The list of all
pose estimation results converted by
``convert_keypoint_definition`` from previous frames. In
pose-lifting stage it is used to obtain the 2d estimation sequence.
next_id (int): The next track id to be used.
pose_lifter (PoseLifter): The pose-lifter for estimating 3d pose.
visualize_frame (np.ndarray): The image for drawing the results on.
visualizer (Visualizer): The visualizer for visualizing the 2d and 3d
pose estimation results.
Returns:
pose_est_results (list(PoseDataSample)): The pose estimation result of
the current frame.
pose_est_results_list (list(list(PoseDataSample))): The list of all
converted pose estimation results until the current frame.
pred_3d_instances (InstanceData): The result of pose-lifting.
Specifically, the predicted keypoints and scores are saved at
``pred_3d_instances.keypoints`` and
``pred_3d_instances.keypoint_scores``.
next_id (int): The next track id to be used.
"""
# pose_dataset = pose_estimator.cfg.test_dataloader.dataset
pose_det_dataset_name = pose_estimator.dataset_meta['dataset_name']
# First stage: conduct 2D pose detection in a Topdown manner
# use detector to obtain person bounding boxes
det_result = inference_detector(detector, frame)
pred_instance = det_result.pred_instances.cpu().numpy()
# filter out the person instances with category and bbox threshold
# e.g. 0 for person in COCO
bboxes = pred_instance.bboxes
bboxes = bboxes[np.logical_and(pred_instance.labels == args.det_cat_id,
pred_instance.scores > args.bbox_thr)]
# estimate pose results for current image
pose_est_results = inference_topdown(pose_estimator, frame, bboxes)
# post-processing
for idx, pose_est_result in enumerate(pose_est_results):
pose_est_result.track_id = pose_est_results[idx].get('track_id', 1e4)
pred_instances = pose_est_result.pred_instances
keypoints = pred_instances.keypoints
keypoint_scores = pred_instances.keypoint_scores
if keypoint_scores.ndim == 3:
keypoint_scores = np.squeeze(keypoint_scores, axis=1)
pose_est_results[
idx].pred_instances.keypoint_scores = keypoint_scores
if keypoints.ndim == 4:
keypoints = np.squeeze(keypoints, axis=1)
keypoints = -keypoints[..., [0, 2, 1]]
# rebase height (z-axis)
if not args.disable_rebase_keypoint:
keypoints[..., 2] -= np.min(
keypoints[..., 2], axis=-1, keepdims=True)
pose_est_results[idx].pred_instances.keypoints = keypoints
pose_est_results = sorted(
pose_est_results, key=lambda x: x.get('track_id', 1e4))
pred_3d_data_samples = merge_data_samples(pose_est_results)
pred_3d_instances = pred_3d_data_samples.get('pred_instances', None)
if args.num_instances < 0:
args.num_instances = len(pose_est_results)
# Visualization
if visualizer is not None:
visualizer.add_datasample(
'result',
visualize_frame,
data_sample=pred_3d_data_samples,
det_data_sample=pred_3d_data_samples,
draw_gt=False,
draw_2d=True,
dataset_2d=pose_det_dataset_name,
dataset_3d=pose_det_dataset_name,
show=args.show,
draw_bbox=True,
kpt_thr=args.kpt_thr,
convert_keypoint=False,
axis_limit=400,
axis_azimuth=70,
axis_elev=15,
num_instances=args.num_instances,
wait_time=args.show_interval)
return pose_est_results, pose_est_results_list, pred_3d_instances, next_id
def main():
assert has_mmdet, 'Please install mmdet to run the demo.'
args = parse_args()
assert args.show or (args.output_root != '')
assert args.input != ''
assert args.det_config is not None
assert args.det_checkpoint is not None
detector = init_detector(
args.det_config, args.det_checkpoint, device=args.device.lower())
detector.cfg = adapt_mmdet_pipeline(detector.cfg)
pose_estimator = init_model(
args.pose3d_estimator_config,
args.pose3d_estimator_checkpoint,
device=args.device.lower())
det_kpt_color = pose_estimator.dataset_meta.get('keypoint_colors', None)
det_dataset_skeleton = pose_estimator.dataset_meta.get(
'skeleton_links', None)
det_dataset_link_color = pose_estimator.dataset_meta.get(
'skeleton_link_colors', None)
pose_estimator.cfg.model.test_cfg.mode = 'vis'
pose_estimator.cfg.visualizer.radius = args.radius
pose_estimator.cfg.visualizer.line_width = args.thickness
pose_estimator.cfg.visualizer.det_kpt_color = det_kpt_color
pose_estimator.cfg.visualizer.det_dataset_skeleton = det_dataset_skeleton
pose_estimator.cfg.visualizer.det_dataset_link_color = det_dataset_link_color # noqa: E501
pose_estimator.cfg.visualizer.skeleton = det_dataset_skeleton
pose_estimator.cfg.visualizer.link_color = det_dataset_link_color
pose_estimator.cfg.visualizer.kpt_color = det_kpt_color
visualizer = VISUALIZERS.build(pose_estimator.cfg.visualizer)
if args.input == 'webcam':
input_type = 'webcam'
else:
input_type = mimetypes.guess_type(args.input)[0].split('/')[0]
if args.output_root == '':
save_output = False
else:
mmengine.mkdir_or_exist(args.output_root)
output_file = os.path.join(args.output_root,
os.path.basename(args.input))
if args.input == 'webcam':
output_file += '.mp4'
save_output = True
if args.save_predictions:
assert args.output_root != ''
args.pred_save_path = f'{args.output_root}/results_' \
f'{os.path.splitext(os.path.basename(args.input))[0]}.json'
if save_output:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
pose_est_results_list = []
pred_instances_list = []
if input_type == 'image':
frame = mmcv.imread(args.input, channel_order='rgb')
_, _, pred_3d_instances, _ = process_one_image(
args=args,
detector=detector,
frame=args.input,
frame_idx=0,
pose_estimator=pose_estimator,
pose_est_results_last=[],
pose_est_results_list=pose_est_results_list,
next_id=0,
visualize_frame=frame,
visualizer=visualizer)
if args.save_predictions:
# save prediction results
pred_instances_list = split_instances(pred_3d_instances)
if save_output:
frame_vis = visualizer.get_image()
mmcv.imwrite(mmcv.rgb2bgr(frame_vis), output_file)
elif input_type in ['webcam', 'video']:
next_id = 0
pose_est_results = []
if args.input == 'webcam':
video = cv2.VideoCapture(0)
else:
video = cv2.VideoCapture(args.input)
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
if int(major_ver) < 3:
fps = video.get(cv2.cv.CV_CAP_PROP_FPS)
else:
fps = video.get(cv2.CAP_PROP_FPS)
video_writer = None
frame_idx = 0
while video.isOpened():
success, frame = video.read()
frame_idx += 1
if not success:
break
pose_est_results_last = pose_est_results
# First stage: 2D pose detection
# make person results for current image
(pose_est_results, pose_est_results_list, pred_3d_instances,
next_id) = process_one_image(
args=args,
detector=detector,
frame=frame,
frame_idx=frame_idx,
pose_estimator=pose_estimator,
pose_est_results_last=pose_est_results_last,
pose_est_results_list=pose_est_results_list,
next_id=next_id,
visualize_frame=mmcv.bgr2rgb(frame),
visualizer=visualizer)
if args.save_predictions:
# save prediction results
pred_instances_list.append(
dict(
frame_id=frame_idx,
instances=split_instances(pred_3d_instances)))
if save_output:
frame_vis = visualizer.get_image()
if video_writer is None:
# the size of the image with visualization may vary
# depending on the presence of heatmaps
video_writer = cv2.VideoWriter(output_file, fourcc, fps,
(frame_vis.shape[1],
frame_vis.shape[0]))
video_writer.write(mmcv.rgb2bgr(frame_vis))
if args.show:
# press ESC to exit
if cv2.waitKey(5) & 0xFF == 27:
break
time.sleep(args.show_interval)
video.release()
if video_writer:
video_writer.release()
else:
args.save_predictions = False
raise ValueError(
f'file {os.path.basename(args.input)} has invalid format.')
if args.save_predictions:
with open(args.pred_save_path, 'w') as f:
json.dump(
dict(
meta_info=pose_estimator.dataset_meta,
instance_info=pred_instances_list),
f,
indent='\t')
print(f'predictions have been saved at {args.pred_save_path}')
if save_output:
input_type = input_type.replace('webcam', 'video')
print_log(
f'the output {input_type} has been saved at {output_file}',
logger='current',
level=logging.INFO)
if __name__ == '__main__':
main()