mmpose/projects/rtmpose/rtmdet/person/rtmdet_nano_320-8xb32_coco-...

105 lines
2.8 KiB
Python

_base_ = 'mmdet::rtmdet/rtmdet_l_8xb32-300e_coco.py'
input_shape = 320
model = dict(
backbone=dict(
deepen_factor=0.33,
widen_factor=0.25,
use_depthwise=True,
),
neck=dict(
in_channels=[64, 128, 256],
out_channels=64,
num_csp_blocks=1,
use_depthwise=True,
),
bbox_head=dict(
in_channels=64,
feat_channels=64,
share_conv=False,
exp_on_reg=False,
use_depthwise=True,
num_classes=1),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100))
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='CachedMosaic',
img_scale=(input_shape, input_shape),
pad_val=114.0,
max_cached_images=20,
random_pop=False),
dict(
type='RandomResize',
scale=(input_shape * 2, input_shape * 2),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(input_shape, input_shape)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(
type='Pad',
size=(input_shape, input_shape),
pad_val=dict(img=(114, 114, 114))),
dict(type='PackDetInputs')
]
train_pipeline_stage2 = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomResize',
scale=(input_shape, input_shape),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(input_shape, input_shape)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(
type='Pad',
size=(input_shape, input_shape),
pad_val=dict(img=(114, 114, 114))),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(input_shape, input_shape), keep_ratio=True),
dict(
type='Pad',
size=(input_shape, input_shape),
pad_val=dict(img=(114, 114, 114))),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
dataset=dict(pipeline=train_pipeline, metainfo=dict(classes=('person', ))))
val_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=('person', ))))
test_dataloader = val_dataloader
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='PipelineSwitchHook',
switch_epoch=280,
switch_pipeline=train_pipeline_stage2)
]