mirror of https://github.com/open-mmlab/mmpose
181 lines
5.2 KiB
Python
181 lines
5.2 KiB
Python
_base_ = [
|
|
'mmdet::_base_/default_runtime.py',
|
|
'mmdet::_base_/schedules/schedule_1x.py', './humanart_detection.py',
|
|
'mmdet::rtmdet_tta.py'
|
|
]
|
|
model = dict(
|
|
type='RTMDet',
|
|
data_preprocessor=dict(
|
|
type='DetDataPreprocessor',
|
|
mean=[103.53, 116.28, 123.675],
|
|
std=[57.375, 57.12, 58.395],
|
|
bgr_to_rgb=False,
|
|
batch_augments=None),
|
|
backbone=dict(
|
|
type='CSPNeXt',
|
|
arch='P5',
|
|
expand_ratio=0.5,
|
|
deepen_factor=1,
|
|
widen_factor=1,
|
|
channel_attention=True,
|
|
norm_cfg=dict(type='SyncBN'),
|
|
act_cfg=dict(type='SiLU', inplace=True)),
|
|
neck=dict(
|
|
type='CSPNeXtPAFPN',
|
|
in_channels=[256, 512, 1024],
|
|
out_channels=256,
|
|
num_csp_blocks=3,
|
|
expand_ratio=0.5,
|
|
norm_cfg=dict(type='SyncBN'),
|
|
act_cfg=dict(type='SiLU', inplace=True)),
|
|
bbox_head=dict(
|
|
type='RTMDetSepBNHead',
|
|
num_classes=80,
|
|
in_channels=256,
|
|
stacked_convs=2,
|
|
feat_channels=256,
|
|
anchor_generator=dict(
|
|
type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]),
|
|
bbox_coder=dict(type='DistancePointBBoxCoder'),
|
|
loss_cls=dict(
|
|
type='QualityFocalLoss',
|
|
use_sigmoid=True,
|
|
beta=2.0,
|
|
loss_weight=1.0),
|
|
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
|
|
with_objectness=False,
|
|
exp_on_reg=True,
|
|
share_conv=True,
|
|
pred_kernel_size=1,
|
|
norm_cfg=dict(type='SyncBN'),
|
|
act_cfg=dict(type='SiLU', inplace=True)),
|
|
train_cfg=dict(
|
|
assigner=dict(type='DynamicSoftLabelAssigner', topk=13),
|
|
allowed_border=-1,
|
|
pos_weight=-1,
|
|
debug=False),
|
|
test_cfg=dict(
|
|
nms_pre=30000,
|
|
min_bbox_size=0,
|
|
score_thr=0.001,
|
|
nms=dict(type='nms', iou_threshold=0.65),
|
|
max_per_img=300),
|
|
)
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
|
|
dict(
|
|
type='RandomResize',
|
|
scale=(1280, 1280),
|
|
ratio_range=(0.1, 2.0),
|
|
keep_ratio=True),
|
|
dict(type='RandomCrop', crop_size=(640, 640)),
|
|
dict(type='YOLOXHSVRandomAug'),
|
|
dict(type='RandomFlip', prob=0.5),
|
|
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
|
dict(
|
|
type='CachedMixUp',
|
|
img_scale=(640, 640),
|
|
ratio_range=(1.0, 1.0),
|
|
max_cached_images=20,
|
|
pad_val=(114, 114, 114)),
|
|
dict(type='PackDetInputs')
|
|
]
|
|
|
|
train_pipeline_stage2 = [
|
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(
|
|
type='RandomResize',
|
|
scale=(640, 640),
|
|
ratio_range=(0.1, 2.0),
|
|
keep_ratio=True),
|
|
dict(type='RandomCrop', crop_size=(640, 640)),
|
|
dict(type='YOLOXHSVRandomAug'),
|
|
dict(type='RandomFlip', prob=0.5),
|
|
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
|
dict(type='PackDetInputs')
|
|
]
|
|
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
|
|
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
|
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(
|
|
type='PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor'))
|
|
]
|
|
|
|
train_dataloader = dict(
|
|
batch_size=32,
|
|
num_workers=10,
|
|
batch_sampler=None,
|
|
pin_memory=True,
|
|
dataset=dict(pipeline=train_pipeline))
|
|
val_dataloader = dict(
|
|
batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline))
|
|
test_dataloader = val_dataloader
|
|
|
|
max_epochs = 300
|
|
stage2_num_epochs = 20
|
|
base_lr = 0.0005
|
|
interval = 10
|
|
|
|
train_cfg = dict(
|
|
max_epochs=max_epochs,
|
|
val_interval=interval,
|
|
dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)])
|
|
|
|
val_evaluator = dict(proposal_nums=(100, 1, 10))
|
|
test_evaluator = val_evaluator
|
|
|
|
# optimizer
|
|
optim_wrapper = dict(
|
|
_delete_=True,
|
|
type='OptimWrapper',
|
|
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
|
|
paramwise_cfg=dict(
|
|
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
|
|
|
# learning rate
|
|
param_scheduler = [
|
|
dict(
|
|
type='LinearLR',
|
|
start_factor=1.0e-5,
|
|
by_epoch=False,
|
|
begin=0,
|
|
end=1000),
|
|
dict(
|
|
# use cosine lr from 150 to 300 epoch
|
|
type='CosineAnnealingLR',
|
|
eta_min=base_lr * 0.05,
|
|
begin=max_epochs // 2,
|
|
end=max_epochs,
|
|
T_max=max_epochs // 2,
|
|
by_epoch=True,
|
|
convert_to_iter_based=True),
|
|
]
|
|
|
|
# hooks
|
|
default_hooks = dict(
|
|
checkpoint=dict(
|
|
interval=interval,
|
|
max_keep_ckpts=3 # only keep latest 3 checkpoints
|
|
))
|
|
custom_hooks = [
|
|
dict(
|
|
type='EMAHook',
|
|
ema_type='ExpMomentumEMA',
|
|
momentum=0.0002,
|
|
update_buffers=True,
|
|
priority=49),
|
|
dict(
|
|
type='PipelineSwitchHook',
|
|
switch_epoch=max_epochs - stage2_num_epochs,
|
|
switch_pipeline=train_pipeline_stage2)
|
|
]
|