mmpose/projects/pose_anything/models/backbones/swin_transformer_v2.py

827 lines
31 KiB
Python

# --------------------------------------------------------
# Swin Transformer V2
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from mmpose.models.builder import BACKBONES
class Mlp(nn.Module):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size,
C)
windows = x.permute(0, 1, 3, 2, 4,
5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size,
window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative
position bias. It supports both of shifted and non-shifted window.
Args: dim (int): Number of input channels. window_size (tuple[int]): The
height and width of the window. num_heads (int): Number of attention
heads. qkv_bias (bool, optional): If True, add a learnable bias to
query, key, value. Default: True attn_drop (float, optional): Dropout
ratio of attention weight. Default: 0.0 proj_drop (float, optional):
Dropout ratio of output. Default: 0.0 pretrained_window_size (tuple[
int]): The height and width of the window in pre-training.
"""
def __init__(self,
dim,
window_size,
num_heads,
qkv_bias=True,
attn_drop=0.,
proj_drop=0.,
pretrained_window_size=[0, 0]):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.pretrained_window_size = pretrained_window_size
self.num_heads = num_heads
self.logit_scale = nn.Parameter(
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
# mlp to generate continuous relative position bias
self.cpb_mlp = nn.Sequential(
nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True),
nn.Linear(512, num_heads, bias=False))
# get relative_coords_table
relative_coords_h = torch.arange(
-(self.window_size[0] - 1),
self.window_size[0],
dtype=torch.float32)
relative_coords_w = torch.arange(
-(self.window_size[1] - 1),
self.window_size[1],
dtype=torch.float32)
relative_coords_table = torch.stack(
torch.meshgrid([relative_coords_h, relative_coords_w])).permute(
1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= (
pretrained_window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (
pretrained_window_size[1] - 1)
else:
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
self.register_buffer('relative_coords_table', relative_coords_table)
# get pair-wise relative position index for each token inside the
# window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :,
None] - coords_flatten[:, None, :] #
# 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :,
0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer('relative_position_index',
relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(dim))
self.v_bias = nn.Parameter(torch.zeros(dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args: x: input features with shape of (num_windows*B, N, C) mask: (
0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(self.q_bias,
torch.zeros_like(self.v_bias,
requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
# cosine attention
attn = (
F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
logit_scale = torch.clamp(
self.logit_scale,
max=torch.log(torch.tensor(1. / 0.01, device=x.device))).exp()
attn = attn * logit_scale
relative_position_bias_table = self.cpb_mlp(
self.relative_coords_table).view(-1, self.num_heads)
relative_position_bias = relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, ' \
(f'pretrained_window_size={self.pretrained_window_size}, '
f'num_heads={self.num_heads}')
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class SwinTransformerBlock(nn.Module):
r""" Swin Transformer Block.
Args: dim (int): Number of input channels. input_resolution (tuple[int]):
Input resolution. num_heads (int): Number of attention heads. window_size
(int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (
float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool,
optional): If True, add a learnable bias to query, key, value. Default:
True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float,
optional): Attention dropout rate. Default: 0.0 drop_path (float,
optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module,
optional): Activation layer. Default: nn.GELU norm_layer (nn.Module,
optional): Normalization layer. Default: nn.LayerNorm
pretrained_window_size (int): Window size in pre-training.
"""
def __init__(self,
dim,
input_resolution,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.,
qkv_bias=True,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
pretrained_window_size=0):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't
# partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, ('shift_size must in '
'0-window_size')
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim,
window_size=to_2tuple(self.window_size),
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
pretrained_window_size=to_2tuple(pretrained_window_size))
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size,
-self.shift_size), slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size,
-self.shift_size), slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(
img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(
-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0,
float(-100.0)).masked_fill(
attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer('attn_mask', attn_mask)
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, 'input feature has wrong size'
shortcut = x
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
# partition windows
x_windows = window_partition(
shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size,
C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(
x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size,
self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H,
W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(
shifted_x,
shifts=(self.shift_size, self.shift_size),
dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C)
x = shortcut + self.drop_path(self.norm1(x))
# FFN
x = x + self.drop_path(self.norm2(self.mlp(x)))
return x
def extra_repr(self) -> str:
return (f'dim={self.dim}, input_resolution={self.input_resolution}, '
f'num_heads={self.num_heads}, '
f'window_size={self.window_size}, '
f'shift_size={self.shift_size}, '
f'mlp_ratio={self.mlp_ratio}')
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# W-MSA/SW-MSA
nW = H * W / self.window_size / self.window_size
flops += nW * self.attn.flops(self.window_size * self.window_size)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args: input_resolution (tuple[int]): Resolution of input feature. dim (
int): Number of input channels. norm_layer (nn.Module, optional):
Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(2 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, 'input feature has wrong size'
assert H % 2 == 0 and W % 2 == 0, f'x size ({H}*{W}) are not even.'
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.reduction(x)
x = self.norm(x)
return x
def extra_repr(self) -> str:
return f'input_resolution={self.input_resolution}, dim={self.dim}'
def flops(self):
H, W = self.input_resolution
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
flops += H * W * self.dim // 2
return flops
class BasicLayer(nn.Module):
"""A basic Swin Transformer layer for one stage.
Args: dim (int): Number of input channels. input_resolution (tuple[int]):
Input resolution. depth (int): Number of blocks. num_heads (int): Number
of attention heads. window_size (int): Local window size. mlp_ratio (
float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool,
optional): If True, add a learnable bias to query, key, value. Default:
True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float,
optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[
float], optional): Stochastic depth rate. Default: 0.0 norm_layer (
nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of
the layer. Default: None use_checkpoint (bool): Whether to use
checkpointing to save memory. Default: False. pretrained_window_size (
int): Local window size in pre-training.
"""
def __init__(self,
dim,
input_resolution,
depth,
num_heads,
window_size,
mlp_ratio=4.,
qkv_bias=True,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False,
pretrained_window_size=0):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i]
if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
pretrained_window_size=pretrained_window_size)
for i in range(depth)
])
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return (f'dim={self.dim}, input_resolution={self.input_resolution}, '
f'depth={self.depth}')
def flops(self):
flops = 0
for blk in self.blocks:
flops += blk.flops()
if self.downsample is not None:
flops += self.downsample.flops()
return flops
def _init_respostnorm(self):
for blk in self.blocks:
nn.init.constant_(blk.norm1.bias, 0)
nn.init.constant_(blk.norm1.weight, 0)
nn.init.constant_(blk.norm2.bias, 0)
nn.init.constant_(blk.norm2.weight, 0)
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args: img_size (int): Image size. Default: 224. patch_size (int): Patch
token size. Default: 4. in_chans (int): Number of input image channels.
Default: 3. embed_dim (int): Number of linear projection output channels.
Default: 96. norm_layer (nn.Module, optional): Normalization layer.
Default: None
"""
def __init__(self,
img_size=224,
patch_size=4,
in_chans=3,
embed_dim=96,
norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [
img_size[0] // patch_size[0], img_size[1] // patch_size[1]
]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
(f"Input image size ({H}*{W}) doesn't match model "
f'({self.img_size[0]}*{self.img_size[1]}).')
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x
def flops(self):
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (
self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
@BACKBONES.register_module()
class SwinTransformerV2(nn.Module):
r""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical
Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args: img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int):
Number of input image channels. Default: 3 num_classes (int): Number of
classes for classification head. Default: 1000 embed_dim (int): Patch
embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin
Transformer layer. num_heads (tuple(int)): Number of attention heads in
different layers. window_size (int): Window size. Default: 7 mlp_ratio (
float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (
bool): If True, add a learnable bias to query, key, value. Default: True
drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float):
Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic
depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer.
Default: nn.LayerNorm. ape (bool): If True, add absolute position
embedding to the patch embedding. Default: False patch_norm (bool): If
True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory.
Default: False pretrained_window_sizes (tuple(int)): Pretrained window
sizes of each layer.
"""
def __init__(self,
img_size=224,
patch_size=4,
in_chans=3,
num_classes=1000,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
use_checkpoint=False,
pretrained_window_sizes=[0, 0, 0, 0],
multi_scale=False,
upsample='deconv',
**kwargs):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2**(self.num_layers - 1))
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(
torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2**i_layer),
input_resolution=(patches_resolution[0] // (2**i_layer),
patches_resolution[1] // (2**i_layer)),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if
(i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
pretrained_window_size=pretrained_window_sizes[i_layer])
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.multi_scale = multi_scale
if self.multi_scale:
self.scales = [1, 2, 4, 4]
self.upsample = nn.ModuleList()
features = [
int(embed_dim * 2**i) for i in range(1, self.num_layers)
] + [self.num_features]
self.multi_scale_fuse = nn.Conv2d(
sum(features), self.num_features, 1)
for i in range(self.num_layers):
self.upsample.append(nn.Upsample(scale_factor=self.scales[i]))
else:
if upsample == 'deconv':
self.upsample = nn.ConvTranspose2d(
self.num_features, self.num_features, 2, stride=2)
elif upsample == 'new_deconv':
self.upsample = nn.Sequential(
nn.Upsample(
scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(
self.num_features,
self.num_features,
3,
stride=1,
padding=1), nn.BatchNorm2d(self.num_features),
nn.ReLU(inplace=True))
elif upsample == 'new_deconv2':
self.upsample = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.Conv2d(
self.num_features,
self.num_features,
3,
stride=1,
padding=1), nn.BatchNorm2d(self.num_features),
nn.ReLU(inplace=True))
elif upsample == 'bilinear':
self.upsample = nn.Upsample(
scale_factor=2, mode='bilinear', align_corners=False)
else:
self.upsample = nn.Identity()
self.head = nn.Linear(
self.num_features,
num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
for bly in self.layers:
bly._init_respostnorm()
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'cpb_mlp', 'logit_scale', 'relative_position_bias_table'}
def forward_features(self, x):
B, C, H, W = x.shape
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
if self.multi_scale:
# x_2d = x.view(B, H // 4, W // 4, -1).permute(0, 3, 1, 2) # B C
# H W features = [self.upsample[0](x_2d)]
features = []
for i, layer in enumerate(self.layers):
x = layer(x)
x_2d = x.view(B, H // (8 * self.scales[i]),
W // (8 * self.scales[i]),
-1).permute(0, 3, 1, 2) # B C H W
features.append(self.upsample[i](x_2d))
x = torch.cat(features, dim=1)
x = self.multi_scale_fuse(x)
x = x.view(B, self.num_features, -1).permute(0, 2, 1)
x = self.norm(x) # B L C
x = x.view(B, H // 8, W // 8,
self.num_features).permute(0, 3, 1, 2) # B C H W
else:
for layer in self.layers:
x = layer(x)
x = self.norm(x) # B L C
x = x.view(B, H // 32, W // 32,
self.num_features).permute(0, 3, 1, 2) # B C H W
x = self.upsample(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def flops(self):
flops = 0
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
flops += layer.flops()
flops += self.num_features * self.patches_resolution[
0] * self.patches_resolution[1] // (2**self.num_layers)
flops += self.num_features * self.num_classes
return flops