mmpose/projects/pose_anything/models/backbones/simmim.py

236 lines
7.1 KiB
Python

# --------------------------------------------------------
# SimMIM
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Zhenda Xie
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_
from .swin_transformer import SwinTransformer
from .swin_transformer_v2 import SwinTransformerV2
def norm_targets(targets, patch_size):
assert patch_size % 2 == 1
targets_ = targets
targets_count = torch.ones_like(targets)
targets_square = targets**2.
targets_mean = F.avg_pool2d(
targets,
kernel_size=patch_size,
stride=1,
padding=patch_size // 2,
count_include_pad=False)
targets_square_mean = F.avg_pool2d(
targets_square,
kernel_size=patch_size,
stride=1,
padding=patch_size // 2,
count_include_pad=False)
targets_count = F.avg_pool2d(
targets_count,
kernel_size=patch_size,
stride=1,
padding=patch_size // 2,
count_include_pad=True) * (
patch_size**2)
targets_var = (targets_square_mean - targets_mean**2.) * (
targets_count / (targets_count - 1))
targets_var = torch.clamp(targets_var, min=0.)
targets_ = (targets_ - targets_mean) / (targets_var + 1.e-6)**0.5
return targets_
class SwinTransformerForSimMIM(SwinTransformer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
assert self.num_classes == 0
self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
trunc_normal_(self.mask_token, mean=0., std=.02)
def forward(self, x, mask):
x = self.patch_embed(x)
assert mask is not None
B, L, _ = x.shape
mask_tokens = self.mask_token.expand(B, L, -1)
w = mask.flatten(1).unsqueeze(-1).type_as(mask_tokens)
x = x * (1. - w) + mask_tokens * w
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x)
x = x.transpose(1, 2)
B, C, L = x.shape
H = W = int(L**0.5)
x = x.reshape(B, C, H, W)
return x
@torch.jit.ignore
def no_weight_decay(self):
return super().no_weight_decay() | {'mask_token'}
class SwinTransformerV2ForSimMIM(SwinTransformerV2):
def __init__(self, **kwargs):
super().__init__(**kwargs)
assert self.num_classes == 0
self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
trunc_normal_(self.mask_token, mean=0., std=.02)
def forward(self, x, mask):
x = self.patch_embed(x)
assert mask is not None
B, L, _ = x.shape
mask_tokens = self.mask_token.expand(B, L, -1)
w = mask.flatten(1).unsqueeze(-1).type_as(mask_tokens)
x = x * (1. - w) + mask_tokens * w
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x)
x = x.transpose(1, 2)
B, C, L = x.shape
H = W = int(L**0.5)
x = x.reshape(B, C, H, W)
return x
@torch.jit.ignore
def no_weight_decay(self):
return super().no_weight_decay() | {'mask_token'}
class SimMIM(nn.Module):
def __init__(self, config, encoder, encoder_stride, in_chans, patch_size):
super().__init__()
self.config = config
self.encoder = encoder
self.encoder_stride = encoder_stride
self.decoder = nn.Sequential(
nn.Conv2d(
in_channels=self.encoder.num_features,
out_channels=self.encoder_stride**2 * 3,
kernel_size=1),
nn.PixelShuffle(self.encoder_stride),
)
self.in_chans = in_chans
self.patch_size = patch_size
def forward(self, x, mask):
z = self.encoder(x, mask)
x_rec = self.decoder(z)
mask = mask.repeat_interleave(self.patch_size, 1).repeat_interleave(
self.patch_size, 2).unsqueeze(1).contiguous()
# norm target as prompted
if self.config.NORM_TARGET.ENABLE:
x = norm_targets(x, self.config.NORM_TARGET.PATCH_SIZE)
loss_recon = F.l1_loss(x, x_rec, reduction='none')
loss = (loss_recon * mask).sum() / (mask.sum() + 1e-5) / self.in_chans
return loss
@torch.jit.ignore
def no_weight_decay(self):
if hasattr(self.encoder, 'no_weight_decay'):
return {'encoder.' + i for i in self.encoder.no_weight_decay()}
return {}
@torch.jit.ignore
def no_weight_decay_keywords(self):
if hasattr(self.encoder, 'no_weight_decay_keywords'):
return {
'encoder.' + i
for i in self.encoder.no_weight_decay_keywords()
}
return {}
def build_simmim(config):
model_type = config.MODEL.TYPE
if model_type == 'swin':
encoder = SwinTransformerForSimMIM(
img_size=config.DATA.IMG_SIZE,
patch_size=config.MODEL.SWIN.PATCH_SIZE,
in_chans=config.MODEL.SWIN.IN_CHANS,
num_classes=0,
embed_dim=config.MODEL.SWIN.EMBED_DIM,
depths=config.MODEL.SWIN.DEPTHS,
num_heads=config.MODEL.SWIN.NUM_HEADS,
window_size=config.MODEL.SWIN.WINDOW_SIZE,
mlp_ratio=config.MODEL.SWIN.MLP_RATIO,
qkv_bias=config.MODEL.SWIN.QKV_BIAS,
qk_scale=config.MODEL.SWIN.QK_SCALE,
drop_rate=config.MODEL.DROP_RATE,
drop_path_rate=config.MODEL.DROP_PATH_RATE,
ape=config.MODEL.SWIN.APE,
patch_norm=config.MODEL.SWIN.PATCH_NORM,
use_checkpoint=config.TRAIN.USE_CHECKPOINT)
encoder_stride = 32
in_chans = config.MODEL.SWIN.IN_CHANS
patch_size = config.MODEL.SWIN.PATCH_SIZE
elif model_type == 'swinv2':
encoder = SwinTransformerV2ForSimMIM(
img_size=config.DATA.IMG_SIZE,
patch_size=config.MODEL.SWINV2.PATCH_SIZE,
in_chans=config.MODEL.SWINV2.IN_CHANS,
num_classes=0,
embed_dim=config.MODEL.SWINV2.EMBED_DIM,
depths=config.MODEL.SWINV2.DEPTHS,
num_heads=config.MODEL.SWINV2.NUM_HEADS,
window_size=config.MODEL.SWINV2.WINDOW_SIZE,
mlp_ratio=config.MODEL.SWINV2.MLP_RATIO,
qkv_bias=config.MODEL.SWINV2.QKV_BIAS,
drop_rate=config.MODEL.DROP_RATE,
drop_path_rate=config.MODEL.DROP_PATH_RATE,
ape=config.MODEL.SWINV2.APE,
patch_norm=config.MODEL.SWINV2.PATCH_NORM,
use_checkpoint=config.TRAIN.USE_CHECKPOINT)
encoder_stride = 32
in_chans = config.MODEL.SWINV2.IN_CHANS
patch_size = config.MODEL.SWINV2.PATCH_SIZE
else:
raise NotImplementedError(f'Unknown pre-train model: {model_type}')
model = SimMIM(
config=config.MODEL.SIMMIM,
encoder=encoder,
encoder_stride=encoder_stride,
in_chans=in_chans,
patch_size=patch_size)
return model