mirror of https://github.com/open-mmlab/mmpose
206 lines
5.4 KiB
Python
206 lines
5.4 KiB
Python
custom_imports = dict(imports=['models'])
|
|
|
|
log_level = 'INFO'
|
|
load_from = None
|
|
resume_from = None
|
|
dist_params = dict(backend='nccl')
|
|
workflow = [('train', 1)]
|
|
checkpoint_config = dict(interval=20)
|
|
evaluation = dict(
|
|
interval=25,
|
|
metric=['PCK', 'NME', 'AUC', 'EPE'],
|
|
key_indicator='PCK',
|
|
gpu_collect=True,
|
|
res_folder='')
|
|
optimizer = dict(
|
|
type='Adam',
|
|
lr=1e-5,
|
|
)
|
|
|
|
optimizer_config = dict(grad_clip=None)
|
|
# learning policy
|
|
lr_config = dict(
|
|
policy='step',
|
|
warmup='linear',
|
|
warmup_iters=1000,
|
|
warmup_ratio=0.001,
|
|
step=[160, 180])
|
|
total_epochs = 200
|
|
log_config = dict(
|
|
interval=50,
|
|
hooks=[dict(type='TextLoggerHook'),
|
|
dict(type='TensorboardLoggerHook')])
|
|
|
|
channel_cfg = dict(
|
|
num_output_channels=1,
|
|
dataset_joints=1,
|
|
dataset_channel=[
|
|
[
|
|
0,
|
|
],
|
|
],
|
|
inference_channel=[
|
|
0,
|
|
],
|
|
max_kpt_num=100)
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='PoseAnythingModel',
|
|
pretrained='swinv2_base',
|
|
encoder_config=dict(
|
|
type='SwinTransformerV2',
|
|
embed_dim=128,
|
|
depths=[2, 2, 18, 2],
|
|
num_heads=[4, 8, 16, 32],
|
|
window_size=14,
|
|
pretrained_window_sizes=[12, 12, 12, 6],
|
|
drop_path_rate=0.1,
|
|
img_size=224,
|
|
),
|
|
keypoint_head=dict(
|
|
type='PoseHead',
|
|
in_channels=1024,
|
|
transformer=dict(
|
|
type='EncoderDecoder',
|
|
d_model=256,
|
|
nhead=8,
|
|
num_encoder_layers=3,
|
|
num_decoder_layers=3,
|
|
graph_decoder='pre',
|
|
dim_feedforward=1024,
|
|
dropout=0.1,
|
|
similarity_proj_dim=256,
|
|
dynamic_proj_dim=128,
|
|
activation='relu',
|
|
normalize_before=False,
|
|
return_intermediate_dec=True),
|
|
share_kpt_branch=False,
|
|
num_decoder_layer=3,
|
|
with_heatmap_loss=True,
|
|
heatmap_loss_weight=2.0,
|
|
support_order_dropout=-1,
|
|
positional_encoding=dict(
|
|
type='SinePositionalEncoding', num_feats=128, normalize=True)),
|
|
# training and testing settings
|
|
train_cfg=dict(),
|
|
test_cfg=dict(
|
|
flip_test=False,
|
|
post_process='default',
|
|
shift_heatmap=True,
|
|
modulate_kernel=11))
|
|
|
|
data_cfg = dict(
|
|
image_size=[224, 224],
|
|
heatmap_size=[64, 64],
|
|
num_output_channels=channel_cfg['num_output_channels'],
|
|
num_joints=channel_cfg['dataset_joints'],
|
|
dataset_channel=channel_cfg['dataset_channel'],
|
|
inference_channel=channel_cfg['inference_channel'])
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='TopDownGetRandomScaleRotation', rot_factor=15,
|
|
scale_factor=0.15),
|
|
dict(type='TopDownAffineFewShot'),
|
|
dict(type='ToTensor'),
|
|
dict(
|
|
type='NormalizeTensor',
|
|
mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225]),
|
|
dict(type='TopDownGenerateTargetFewShot', sigma=1),
|
|
dict(
|
|
type='Collect',
|
|
keys=['img', 'target', 'target_weight'],
|
|
meta_keys=[
|
|
'image_file',
|
|
'joints_3d',
|
|
'joints_3d_visible',
|
|
'center',
|
|
'scale',
|
|
'rotation',
|
|
'bbox_score',
|
|
'flip_pairs',
|
|
'category_id',
|
|
'skeleton',
|
|
]),
|
|
]
|
|
|
|
valid_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='TopDownAffineFewShot'),
|
|
dict(type='ToTensor'),
|
|
dict(
|
|
type='NormalizeTensor',
|
|
mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225]),
|
|
dict(type='TopDownGenerateTargetFewShot', sigma=1),
|
|
dict(
|
|
type='Collect',
|
|
keys=['img', 'target', 'target_weight'],
|
|
meta_keys=[
|
|
'image_file',
|
|
'joints_3d',
|
|
'joints_3d_visible',
|
|
'center',
|
|
'scale',
|
|
'rotation',
|
|
'bbox_score',
|
|
'flip_pairs',
|
|
'category_id',
|
|
'skeleton',
|
|
]),
|
|
]
|
|
|
|
test_pipeline = valid_pipeline
|
|
|
|
data_root = 'data/mp100'
|
|
data = dict(
|
|
samples_per_gpu=8,
|
|
workers_per_gpu=8,
|
|
train=dict(
|
|
type='TransformerPoseDataset',
|
|
ann_file=f'{data_root}/annotations/mp100_split1_train.json',
|
|
img_prefix=f'{data_root}/images/',
|
|
# img_prefix=f'{data_root}',
|
|
data_cfg=data_cfg,
|
|
valid_class_ids=None,
|
|
max_kpt_num=channel_cfg['max_kpt_num'],
|
|
num_shots=1,
|
|
pipeline=train_pipeline),
|
|
val=dict(
|
|
type='TransformerPoseDataset',
|
|
ann_file=f'{data_root}/annotations/mp100_split1_val.json',
|
|
img_prefix=f'{data_root}/images/',
|
|
# img_prefix=f'{data_root}',
|
|
data_cfg=data_cfg,
|
|
valid_class_ids=None,
|
|
max_kpt_num=channel_cfg['max_kpt_num'],
|
|
num_shots=1,
|
|
num_queries=15,
|
|
num_episodes=100,
|
|
pipeline=valid_pipeline),
|
|
test=dict(
|
|
type='TestPoseDataset',
|
|
ann_file=f'{data_root}/annotations/mp100_split1_test.json',
|
|
img_prefix=f'{data_root}/images/',
|
|
# img_prefix=f'{data_root}',
|
|
data_cfg=data_cfg,
|
|
valid_class_ids=None,
|
|
max_kpt_num=channel_cfg['max_kpt_num'],
|
|
num_shots=1,
|
|
num_queries=15,
|
|
num_episodes=200,
|
|
pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
|
|
pipeline=test_pipeline),
|
|
)
|
|
vis_backends = [
|
|
dict(type='LocalVisBackend'),
|
|
dict(type='TensorboardVisBackend'),
|
|
]
|
|
visualizer = dict(
|
|
type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
|
|
|
|
shuffle_cfg = dict(interval=1)
|