mmpose/demo/mmdetection_cfg/rtmdet_nano_320-8xb32_hand.py

172 lines
4.8 KiB
Python

_base_ = 'mmdet::rtmdet/rtmdet_l_8xb32-300e_coco.py'
input_shape = 320
model = dict(
backbone=dict(
deepen_factor=0.33,
widen_factor=0.25,
use_depthwise=True,
),
neck=dict(
in_channels=[64, 128, 256],
out_channels=64,
num_csp_blocks=1,
use_depthwise=True,
),
bbox_head=dict(
in_channels=64,
feat_channels=64,
share_conv=False,
exp_on_reg=False,
use_depthwise=True,
num_classes=1),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100))
# file_client_args = dict(
# backend='petrel',
# path_mapping=dict({'data/': 's3://openmmlab/datasets/'}))
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='CachedMosaic',
img_scale=(input_shape, input_shape),
pad_val=114.0,
max_cached_images=20,
random_pop=False),
dict(
type='RandomResize',
scale=(input_shape * 2, input_shape * 2),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(input_shape, input_shape)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(
type='Pad',
size=(input_shape, input_shape),
pad_val=dict(img=(114, 114, 114))),
dict(type='PackDetInputs')
]
train_pipeline_stage2 = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomResize',
scale=(input_shape, input_shape),
ratio_range=(0.5, 1.5),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(input_shape, input_shape)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(
type='Pad',
size=(input_shape, input_shape),
pad_val=dict(img=(114, 114, 114))),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(input_shape, input_shape), keep_ratio=True),
dict(
type='Pad',
size=(input_shape, input_shape),
pad_val=dict(img=(114, 114, 114))),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
data_mode = 'topdown'
data_root = 'data/'
train_dataset = dict(
_delete_=True,
type='ConcatDataset',
datasets=[
dict(
type='mmpose.OneHand10KDataset',
data_root=data_root,
data_mode=data_mode,
pipeline=train_pipeline,
ann_file='onehand10k/annotations/onehand10k_train.json',
data_prefix=dict(img='pose/OneHand10K/')),
dict(
type='mmpose.FreiHandDataset',
data_root=data_root,
data_mode=data_mode,
pipeline=train_pipeline,
ann_file='freihand/annotations/freihand_train.json',
data_prefix=dict(img='pose/FreiHand/')),
dict(
type='mmpose.Rhd2DDataset',
data_root=data_root,
data_mode=data_mode,
pipeline=train_pipeline,
ann_file='rhd/annotations/rhd_train.json',
data_prefix=dict(img='pose/RHD/')),
dict(
type='mmpose.HalpeHandDataset',
data_root=data_root,
data_mode=data_mode,
pipeline=train_pipeline,
ann_file='halpe/annotations/halpe_train_v1.json',
data_prefix=dict(
img='pose/Halpe/hico_20160224_det/images/train2015/') # noqa
)
],
ignore_keys=[
'CLASSES', 'dataset_keypoint_weights', 'dataset_name', 'flip_indices',
'flip_pairs', 'keypoint_colors', 'keypoint_id2name',
'keypoint_name2id', 'lower_body_ids', 'num_keypoints',
'num_skeleton_links', 'sigmas', 'skeleton_link_colors',
'skeleton_links', 'upper_body_ids'
],
)
test_dataset = dict(
_delete_=True,
type='mmpose.OneHand10KDataset',
data_root=data_root,
data_mode=data_mode,
pipeline=test_pipeline,
ann_file='onehand10k/annotations/onehand10k_test.json',
data_prefix=dict(img='pose/OneHand10K/'),
)
train_dataloader = dict(dataset=train_dataset)
val_dataloader = dict(dataset=test_dataset)
test_dataloader = val_dataloader
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='PipelineSwitchHook',
switch_epoch=280,
switch_pipeline=train_pipeline_stage2)
]
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'onehand10k/annotations/onehand10k_test.json',
metric='bbox',
format_only=False)
test_evaluator = val_evaluator
train_cfg = dict(val_interval=1)