mirror of https://github.com/open-mmlab/mmpose
172 lines
4.8 KiB
Python
172 lines
4.8 KiB
Python
_base_ = 'mmdet::rtmdet/rtmdet_l_8xb32-300e_coco.py'
|
|
|
|
input_shape = 320
|
|
|
|
model = dict(
|
|
backbone=dict(
|
|
deepen_factor=0.33,
|
|
widen_factor=0.25,
|
|
use_depthwise=True,
|
|
),
|
|
neck=dict(
|
|
in_channels=[64, 128, 256],
|
|
out_channels=64,
|
|
num_csp_blocks=1,
|
|
use_depthwise=True,
|
|
),
|
|
bbox_head=dict(
|
|
in_channels=64,
|
|
feat_channels=64,
|
|
share_conv=False,
|
|
exp_on_reg=False,
|
|
use_depthwise=True,
|
|
num_classes=1),
|
|
test_cfg=dict(
|
|
nms_pre=1000,
|
|
min_bbox_size=0,
|
|
score_thr=0.05,
|
|
nms=dict(type='nms', iou_threshold=0.6),
|
|
max_per_img=100))
|
|
|
|
# file_client_args = dict(
|
|
# backend='petrel',
|
|
# path_mapping=dict({'data/': 's3://openmmlab/datasets/'}))
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(
|
|
type='CachedMosaic',
|
|
img_scale=(input_shape, input_shape),
|
|
pad_val=114.0,
|
|
max_cached_images=20,
|
|
random_pop=False),
|
|
dict(
|
|
type='RandomResize',
|
|
scale=(input_shape * 2, input_shape * 2),
|
|
ratio_range=(0.5, 1.5),
|
|
keep_ratio=True),
|
|
dict(type='RandomCrop', crop_size=(input_shape, input_shape)),
|
|
dict(type='YOLOXHSVRandomAug'),
|
|
dict(type='RandomFlip', prob=0.5),
|
|
dict(
|
|
type='Pad',
|
|
size=(input_shape, input_shape),
|
|
pad_val=dict(img=(114, 114, 114))),
|
|
dict(type='PackDetInputs')
|
|
]
|
|
|
|
train_pipeline_stage2 = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(
|
|
type='RandomResize',
|
|
scale=(input_shape, input_shape),
|
|
ratio_range=(0.5, 1.5),
|
|
keep_ratio=True),
|
|
dict(type='RandomCrop', crop_size=(input_shape, input_shape)),
|
|
dict(type='YOLOXHSVRandomAug'),
|
|
dict(type='RandomFlip', prob=0.5),
|
|
dict(
|
|
type='Pad',
|
|
size=(input_shape, input_shape),
|
|
pad_val=dict(img=(114, 114, 114))),
|
|
dict(type='PackDetInputs')
|
|
]
|
|
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='Resize', scale=(input_shape, input_shape), keep_ratio=True),
|
|
dict(
|
|
type='Pad',
|
|
size=(input_shape, input_shape),
|
|
pad_val=dict(img=(114, 114, 114))),
|
|
dict(
|
|
type='PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor'))
|
|
]
|
|
|
|
data_mode = 'topdown'
|
|
data_root = 'data/'
|
|
|
|
train_dataset = dict(
|
|
_delete_=True,
|
|
type='ConcatDataset',
|
|
datasets=[
|
|
dict(
|
|
type='mmpose.OneHand10KDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
pipeline=train_pipeline,
|
|
ann_file='onehand10k/annotations/onehand10k_train.json',
|
|
data_prefix=dict(img='pose/OneHand10K/')),
|
|
dict(
|
|
type='mmpose.FreiHandDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
pipeline=train_pipeline,
|
|
ann_file='freihand/annotations/freihand_train.json',
|
|
data_prefix=dict(img='pose/FreiHand/')),
|
|
dict(
|
|
type='mmpose.Rhd2DDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
pipeline=train_pipeline,
|
|
ann_file='rhd/annotations/rhd_train.json',
|
|
data_prefix=dict(img='pose/RHD/')),
|
|
dict(
|
|
type='mmpose.HalpeHandDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
pipeline=train_pipeline,
|
|
ann_file='halpe/annotations/halpe_train_v1.json',
|
|
data_prefix=dict(
|
|
img='pose/Halpe/hico_20160224_det/images/train2015/') # noqa
|
|
)
|
|
],
|
|
ignore_keys=[
|
|
'CLASSES', 'dataset_keypoint_weights', 'dataset_name', 'flip_indices',
|
|
'flip_pairs', 'keypoint_colors', 'keypoint_id2name',
|
|
'keypoint_name2id', 'lower_body_ids', 'num_keypoints',
|
|
'num_skeleton_links', 'sigmas', 'skeleton_link_colors',
|
|
'skeleton_links', 'upper_body_ids'
|
|
],
|
|
)
|
|
|
|
test_dataset = dict(
|
|
_delete_=True,
|
|
type='mmpose.OneHand10KDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
pipeline=test_pipeline,
|
|
ann_file='onehand10k/annotations/onehand10k_test.json',
|
|
data_prefix=dict(img='pose/OneHand10K/'),
|
|
)
|
|
|
|
train_dataloader = dict(dataset=train_dataset)
|
|
val_dataloader = dict(dataset=test_dataset)
|
|
test_dataloader = val_dataloader
|
|
|
|
custom_hooks = [
|
|
dict(
|
|
type='EMAHook',
|
|
ema_type='ExpMomentumEMA',
|
|
momentum=0.0002,
|
|
update_buffers=True,
|
|
priority=49),
|
|
dict(
|
|
type='PipelineSwitchHook',
|
|
switch_epoch=280,
|
|
switch_pipeline=train_pipeline_stage2)
|
|
]
|
|
|
|
val_evaluator = dict(
|
|
type='CocoMetric',
|
|
ann_file=data_root + 'onehand10k/annotations/onehand10k_test.json',
|
|
metric='bbox',
|
|
format_only=False)
|
|
test_evaluator = val_evaluator
|
|
|
|
train_cfg = dict(val_interval=1)
|