mirror of https://github.com/open-mmlab/mmpose
690 lines
14 KiB
Python
690 lines
14 KiB
Python
_base_ = ['../../../_base_/default_runtime.py']
|
|
|
|
# lapa coco wflw 300w cofw halpe
|
|
|
|
# runtime
|
|
max_epochs = 120
|
|
stage2_num_epochs = 10
|
|
base_lr = 4e-3
|
|
|
|
train_cfg = dict(max_epochs=max_epochs, val_interval=1)
|
|
randomness = dict(seed=21)
|
|
|
|
# optimizer
|
|
optim_wrapper = dict(
|
|
type='OptimWrapper',
|
|
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.),
|
|
clip_grad=dict(max_norm=35, norm_type=2),
|
|
paramwise_cfg=dict(
|
|
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
|
|
|
# learning rate
|
|
param_scheduler = [
|
|
dict(
|
|
type='LinearLR',
|
|
start_factor=1.0e-5,
|
|
by_epoch=False,
|
|
begin=0,
|
|
end=1000),
|
|
dict(
|
|
type='CosineAnnealingLR',
|
|
eta_min=base_lr * 0.005,
|
|
begin=30,
|
|
end=max_epochs,
|
|
T_max=90,
|
|
by_epoch=True,
|
|
convert_to_iter_based=True),
|
|
]
|
|
|
|
# automatically scaling LR based on the actual training batch size
|
|
auto_scale_lr = dict(base_batch_size=512)
|
|
|
|
# codec settings
|
|
codec = dict(
|
|
type='SimCCLabel',
|
|
input_size=(256, 256),
|
|
sigma=(5.66, 5.66),
|
|
simcc_split_ratio=2.0,
|
|
normalize=False,
|
|
use_dark=False)
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='TopdownPoseEstimator',
|
|
data_preprocessor=dict(
|
|
type='PoseDataPreprocessor',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
bgr_to_rgb=True),
|
|
backbone=dict(
|
|
_scope_='mmdet',
|
|
type='CSPNeXt',
|
|
arch='P5',
|
|
expand_ratio=0.5,
|
|
deepen_factor=0.167,
|
|
widen_factor=0.375,
|
|
out_indices=(4, ),
|
|
channel_attention=True,
|
|
norm_cfg=dict(type='SyncBN'),
|
|
act_cfg=dict(type='SiLU'),
|
|
init_cfg=dict(
|
|
type='Pretrained',
|
|
prefix='backbone.',
|
|
checkpoint='https://download.openmmlab.com/mmdetection/v3.0/'
|
|
'rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e-3a2dd350.pth' # noqa
|
|
)),
|
|
head=dict(
|
|
type='RTMCCHead',
|
|
in_channels=384,
|
|
out_channels=106,
|
|
input_size=codec['input_size'],
|
|
in_featuremap_size=tuple([s // 32 for s in codec['input_size']]),
|
|
simcc_split_ratio=codec['simcc_split_ratio'],
|
|
final_layer_kernel_size=7,
|
|
gau_cfg=dict(
|
|
hidden_dims=256,
|
|
s=128,
|
|
expansion_factor=2,
|
|
dropout_rate=0.,
|
|
drop_path=0.,
|
|
act_fn='SiLU',
|
|
use_rel_bias=False,
|
|
pos_enc=False),
|
|
loss=dict(
|
|
type='KLDiscretLoss',
|
|
use_target_weight=True,
|
|
beta=10.,
|
|
label_softmax=True),
|
|
decoder=codec),
|
|
test_cfg=dict(flip_test=True, ))
|
|
|
|
# base dataset settings
|
|
dataset_type = 'LapaDataset'
|
|
data_mode = 'topdown'
|
|
data_root = 'data/'
|
|
|
|
backend_args = dict(backend='local')
|
|
|
|
# pipelines
|
|
train_pipeline = [
|
|
dict(type='LoadImage', backend_args=backend_args),
|
|
dict(type='GetBBoxCenterScale'),
|
|
dict(type='RandomFlip', direction='horizontal'),
|
|
dict(type='RandomHalfBody'),
|
|
dict(
|
|
type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=80),
|
|
dict(type='TopdownAffine', input_size=codec['input_size']),
|
|
dict(type='mmdet.YOLOXHSVRandomAug'),
|
|
dict(
|
|
type='Albumentation',
|
|
transforms=[
|
|
dict(type='Blur', p=0.2),
|
|
dict(type='MedianBlur', p=0.2),
|
|
dict(
|
|
type='CoarseDropout',
|
|
max_holes=1,
|
|
max_height=0.4,
|
|
max_width=0.4,
|
|
min_holes=1,
|
|
min_height=0.2,
|
|
min_width=0.2,
|
|
p=1.0),
|
|
]),
|
|
dict(
|
|
type='GenerateTarget',
|
|
encoder=codec,
|
|
use_dataset_keypoint_weights=True),
|
|
dict(type='PackPoseInputs')
|
|
]
|
|
val_pipeline = [
|
|
dict(type='LoadImage', backend_args=backend_args),
|
|
dict(type='GetBBoxCenterScale'),
|
|
dict(type='TopdownAffine', input_size=codec['input_size']),
|
|
dict(type='PackPoseInputs')
|
|
]
|
|
|
|
train_pipeline_stage2 = [
|
|
dict(type='LoadImage', backend_args=backend_args),
|
|
dict(type='GetBBoxCenterScale'),
|
|
dict(type='RandomFlip', direction='horizontal'),
|
|
dict(type='RandomHalfBody'),
|
|
dict(
|
|
type='RandomBBoxTransform',
|
|
shift_factor=0.,
|
|
scale_factor=[0.75, 1.25],
|
|
rotate_factor=60),
|
|
dict(type='TopdownAffine', input_size=codec['input_size']),
|
|
dict(type='mmdet.YOLOXHSVRandomAug'),
|
|
dict(
|
|
type='Albumentation',
|
|
transforms=[
|
|
dict(type='Blur', p=0.1),
|
|
dict(type='MedianBlur', p=0.1),
|
|
dict(
|
|
type='CoarseDropout',
|
|
max_holes=1,
|
|
max_height=0.4,
|
|
max_width=0.4,
|
|
min_holes=1,
|
|
min_height=0.2,
|
|
min_width=0.2,
|
|
p=0.5),
|
|
]),
|
|
dict(
|
|
type='GenerateTarget',
|
|
encoder=codec,
|
|
use_dataset_keypoint_weights=True),
|
|
dict(type='PackPoseInputs')
|
|
]
|
|
# train dataset
|
|
dataset_lapa = dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='LaPa/annotations/lapa_trainval.json',
|
|
data_prefix=dict(img='pose/LaPa/'),
|
|
pipeline=[],
|
|
)
|
|
|
|
kpt_68_to_106 = [
|
|
#
|
|
(0, 0),
|
|
(1, 2),
|
|
(2, 4),
|
|
(3, 6),
|
|
(4, 8),
|
|
(5, 10),
|
|
(6, 12),
|
|
(7, 14),
|
|
(8, 16),
|
|
(9, 18),
|
|
(10, 20),
|
|
(11, 22),
|
|
(12, 24),
|
|
(13, 26),
|
|
(14, 28),
|
|
(15, 30),
|
|
(16, 32),
|
|
#
|
|
(17, 33),
|
|
(18, 34),
|
|
(19, 35),
|
|
(20, 36),
|
|
(21, 37),
|
|
#
|
|
(22, 42),
|
|
(23, 43),
|
|
(24, 44),
|
|
(25, 45),
|
|
(26, 46),
|
|
#
|
|
(27, 51),
|
|
(28, 52),
|
|
(29, 53),
|
|
(30, 54),
|
|
#
|
|
(31, 58),
|
|
(32, 59),
|
|
(33, 60),
|
|
(34, 61),
|
|
(35, 62),
|
|
#
|
|
(36, 66),
|
|
(39, 70),
|
|
#
|
|
((37, 38), 68),
|
|
((40, 41), 72),
|
|
#
|
|
(42, 75),
|
|
(45, 79),
|
|
#
|
|
((43, 44), 77),
|
|
((46, 47), 81),
|
|
#
|
|
(48, 84),
|
|
(49, 85),
|
|
(50, 86),
|
|
(51, 87),
|
|
(52, 88),
|
|
(53, 89),
|
|
(54, 90),
|
|
(55, 91),
|
|
(56, 92),
|
|
(57, 93),
|
|
(58, 94),
|
|
(59, 95),
|
|
(60, 96),
|
|
(61, 97),
|
|
(62, 98),
|
|
(63, 99),
|
|
(64, 100),
|
|
(65, 101),
|
|
(66, 102),
|
|
(67, 103)
|
|
]
|
|
|
|
mapping_halpe = [
|
|
#
|
|
(26, 0),
|
|
(27, 2),
|
|
(28, 4),
|
|
(29, 6),
|
|
(30, 8),
|
|
(31, 10),
|
|
(32, 12),
|
|
(33, 14),
|
|
(34, 16),
|
|
(35, 18),
|
|
(36, 20),
|
|
(37, 22),
|
|
(38, 24),
|
|
(39, 26),
|
|
(40, 28),
|
|
(41, 30),
|
|
(42, 32),
|
|
#
|
|
(43, 33),
|
|
(44, 34),
|
|
(45, 35),
|
|
(46, 36),
|
|
(47, 37),
|
|
#
|
|
(48, 42),
|
|
(49, 43),
|
|
(50, 44),
|
|
(51, 45),
|
|
(52, 46),
|
|
#
|
|
(53, 51),
|
|
(54, 52),
|
|
(55, 53),
|
|
(56, 54),
|
|
#
|
|
(57, 58),
|
|
(58, 59),
|
|
(59, 60),
|
|
(60, 61),
|
|
(61, 62),
|
|
#
|
|
(62, 66),
|
|
(65, 70),
|
|
#
|
|
((63, 64), 68),
|
|
((66, 67), 72),
|
|
#
|
|
(68, 75),
|
|
(71, 79),
|
|
#
|
|
((69, 70), 77),
|
|
((72, 73), 81),
|
|
#
|
|
(74, 84),
|
|
(75, 85),
|
|
(76, 86),
|
|
(77, 87),
|
|
(78, 88),
|
|
(79, 89),
|
|
(80, 90),
|
|
(81, 91),
|
|
(82, 92),
|
|
(83, 93),
|
|
(84, 94),
|
|
(85, 95),
|
|
(86, 96),
|
|
(87, 97),
|
|
(88, 98),
|
|
(89, 99),
|
|
(90, 100),
|
|
(91, 101),
|
|
(92, 102),
|
|
(93, 103)
|
|
]
|
|
|
|
mapping_wflw = [
|
|
#
|
|
(0, 0),
|
|
(1, 1),
|
|
(2, 2),
|
|
(3, 3),
|
|
(4, 4),
|
|
(5, 5),
|
|
(6, 6),
|
|
(7, 7),
|
|
(8, 8),
|
|
(9, 9),
|
|
(10, 10),
|
|
(11, 11),
|
|
(12, 12),
|
|
(13, 13),
|
|
(14, 14),
|
|
(15, 15),
|
|
(16, 16),
|
|
(17, 17),
|
|
(18, 18),
|
|
(19, 19),
|
|
(20, 20),
|
|
(21, 21),
|
|
(22, 22),
|
|
(23, 23),
|
|
(24, 24),
|
|
(25, 25),
|
|
(26, 26),
|
|
(27, 27),
|
|
(28, 28),
|
|
(29, 29),
|
|
(30, 30),
|
|
(31, 31),
|
|
(32, 32),
|
|
#
|
|
(33, 33),
|
|
(34, 34),
|
|
(35, 35),
|
|
(36, 36),
|
|
(37, 37),
|
|
(38, 38),
|
|
(39, 39),
|
|
(40, 40),
|
|
(41, 41),
|
|
#
|
|
(42, 42),
|
|
(43, 43),
|
|
(44, 44),
|
|
(45, 45),
|
|
(46, 46),
|
|
(47, 47),
|
|
(48, 48),
|
|
(49, 49),
|
|
(50, 50),
|
|
#
|
|
(51, 51),
|
|
(52, 52),
|
|
(53, 53),
|
|
(54, 54),
|
|
#
|
|
(55, 58),
|
|
(56, 59),
|
|
(57, 60),
|
|
(58, 61),
|
|
(59, 62),
|
|
#
|
|
(60, 66),
|
|
(61, 67),
|
|
(62, 68),
|
|
(63, 69),
|
|
(64, 70),
|
|
(65, 71),
|
|
(66, 72),
|
|
(67, 73),
|
|
#
|
|
(68, 75),
|
|
(69, 76),
|
|
(70, 77),
|
|
(71, 78),
|
|
(72, 79),
|
|
(73, 80),
|
|
(74, 81),
|
|
(75, 82),
|
|
#
|
|
(76, 84),
|
|
(77, 85),
|
|
(78, 86),
|
|
(79, 87),
|
|
(80, 88),
|
|
(81, 89),
|
|
(82, 90),
|
|
(83, 91),
|
|
(84, 92),
|
|
(85, 93),
|
|
(86, 94),
|
|
(87, 95),
|
|
(88, 96),
|
|
(89, 97),
|
|
(90, 98),
|
|
(91, 99),
|
|
(92, 100),
|
|
(93, 101),
|
|
(94, 102),
|
|
(95, 103),
|
|
#
|
|
(96, 104),
|
|
#
|
|
(97, 105)
|
|
]
|
|
|
|
mapping_cofw = [
|
|
#
|
|
(0, 33),
|
|
(2, 38),
|
|
(4, 35),
|
|
(5, 40),
|
|
#
|
|
(1, 46),
|
|
(3, 50),
|
|
(6, 44),
|
|
(7, 48),
|
|
#
|
|
(8, 60),
|
|
(10, 64),
|
|
(12, 62),
|
|
(13, 66),
|
|
#
|
|
(9, 72),
|
|
(11, 68),
|
|
(14, 70),
|
|
(15, 74),
|
|
#
|
|
(18, 57),
|
|
(19, 63),
|
|
(20, 54),
|
|
(21, 60),
|
|
#
|
|
(22, 84),
|
|
(23, 90),
|
|
(24, 87),
|
|
(25, 98),
|
|
(26, 102),
|
|
(27, 93),
|
|
#
|
|
(28, 16)
|
|
]
|
|
dataset_coco = dict(
|
|
type='CocoWholeBodyFaceDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='coco/annotations/coco_wholebody_train_v1.0.json',
|
|
data_prefix=dict(img='detection/coco/train2017/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter', num_keypoints=106, mapping=kpt_68_to_106)
|
|
],
|
|
)
|
|
|
|
dataset_wflw = dict(
|
|
type='WFLWDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='wflw/annotations/face_landmarks_wflw_train.json',
|
|
data_prefix=dict(img='pose/WFLW/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter', num_keypoints=106, mapping=mapping_wflw)
|
|
],
|
|
)
|
|
|
|
dataset_300w = dict(
|
|
type='Face300WDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='300w/annotations/face_landmarks_300w_train.json',
|
|
data_prefix=dict(img='pose/300w/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter', num_keypoints=106, mapping=kpt_68_to_106)
|
|
],
|
|
)
|
|
|
|
dataset_cofw = dict(
|
|
type='COFWDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='cofw/annotations/cofw_train.json',
|
|
data_prefix=dict(img='pose/COFW/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter', num_keypoints=106, mapping=mapping_cofw)
|
|
],
|
|
)
|
|
|
|
dataset_halpe = dict(
|
|
type='HalpeDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='halpe/annotations/halpe_train_133kpt.json',
|
|
data_prefix=dict(img='pose/Halpe/hico_20160224_det/images/train2015/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter', num_keypoints=106, mapping=mapping_halpe)
|
|
],
|
|
)
|
|
|
|
# data loaders
|
|
train_dataloader = dict(
|
|
batch_size=256,
|
|
num_workers=10,
|
|
persistent_workers=True,
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
dataset=dict(
|
|
type='CombinedDataset',
|
|
metainfo=dict(from_file='configs/_base_/datasets/lapa.py'),
|
|
datasets=[
|
|
dataset_lapa, dataset_coco, dataset_wflw, dataset_300w,
|
|
dataset_cofw, dataset_halpe
|
|
],
|
|
pipeline=train_pipeline,
|
|
test_mode=False,
|
|
))
|
|
val_dataloader = dict(
|
|
batch_size=32,
|
|
num_workers=10,
|
|
persistent_workers=True,
|
|
drop_last=False,
|
|
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='LaPa/annotations/lapa_test.json',
|
|
data_prefix=dict(img='pose/LaPa/'),
|
|
test_mode=True,
|
|
pipeline=val_pipeline,
|
|
))
|
|
|
|
# test dataset
|
|
val_lapa = dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='LaPa/annotations/lapa_test.json',
|
|
data_prefix=dict(img='pose/LaPa/'),
|
|
pipeline=[],
|
|
)
|
|
|
|
val_coco = dict(
|
|
type='CocoWholeBodyFaceDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='coco/annotations/coco_wholebody_val_v1.0.json',
|
|
data_prefix=dict(img='detection/coco/val2017/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter', num_keypoints=106, mapping=kpt_68_to_106)
|
|
],
|
|
)
|
|
|
|
val_wflw = dict(
|
|
type='WFLWDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='wflw/annotations/face_landmarks_wflw_test.json',
|
|
data_prefix=dict(img='pose/WFLW/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter', num_keypoints=106, mapping=mapping_wflw)
|
|
],
|
|
)
|
|
|
|
val_300w = dict(
|
|
type='Face300WDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='300w/annotations/face_landmarks_300w_test.json',
|
|
data_prefix=dict(img='pose/300w/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter', num_keypoints=106, mapping=kpt_68_to_106)
|
|
],
|
|
)
|
|
|
|
val_cofw = dict(
|
|
type='COFWDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='cofw/annotations/cofw_test.json',
|
|
data_prefix=dict(img='pose/COFW/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter', num_keypoints=106, mapping=mapping_cofw)
|
|
],
|
|
)
|
|
|
|
val_halpe = dict(
|
|
type='HalpeDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='halpe/annotations/halpe_val_v1.json',
|
|
data_prefix=dict(img='detection/coco/val2017/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter', num_keypoints=106, mapping=mapping_halpe)
|
|
],
|
|
)
|
|
|
|
test_dataloader = dict(
|
|
batch_size=32,
|
|
num_workers=10,
|
|
persistent_workers=True,
|
|
drop_last=False,
|
|
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
|
|
dataset=dict(
|
|
type='CombinedDataset',
|
|
metainfo=dict(from_file='configs/_base_/datasets/lapa.py'),
|
|
datasets=[val_lapa, val_coco, val_wflw, val_300w, val_cofw, val_halpe],
|
|
pipeline=val_pipeline,
|
|
test_mode=True,
|
|
))
|
|
|
|
# hooks
|
|
default_hooks = dict(
|
|
checkpoint=dict(
|
|
save_best='NME', rule='less', max_keep_ckpts=1, interval=1))
|
|
|
|
custom_hooks = [
|
|
# dict(
|
|
# type='EMAHook',
|
|
# ema_type='ExpMomentumEMA',
|
|
# momentum=0.0002,
|
|
# update_buffers=True,
|
|
# priority=49),
|
|
dict(
|
|
type='mmdet.PipelineSwitchHook',
|
|
switch_epoch=max_epochs - stage2_num_epochs,
|
|
switch_pipeline=train_pipeline_stage2)
|
|
]
|
|
|
|
# evaluators
|
|
val_evaluator = dict(
|
|
type='NME',
|
|
norm_mode='keypoint_distance',
|
|
)
|
|
test_evaluator = val_evaluator
|