mmpose/configs/face_2d_keypoint/rtmpose/face6/rtmpose-s_8xb256-120e_face6...

692 lines
14 KiB
Python

_base_ = ['../../../_base_/default_runtime.py']
# lapa coco wflw 300w cofw halpe
# runtime
max_epochs = 120
stage2_num_epochs = 10
base_lr = 4e-3
train_cfg = dict(max_epochs=max_epochs, val_interval=1)
randomness = dict(seed=21)
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.),
clip_grad=dict(max_norm=35, norm_type=2),
paramwise_cfg=dict(
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0e-5,
by_epoch=False,
begin=0,
end=1000),
dict(
type='CosineAnnealingLR',
eta_min=base_lr * 0.005,
begin=30,
end=max_epochs,
T_max=max_epochs - 30,
by_epoch=True,
convert_to_iter_based=True),
]
# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=512)
# codec settings
codec = dict(
type='SimCCLabel',
input_size=(256, 256),
sigma=(5.66, 5.66),
simcc_split_ratio=2.0,
normalize=False,
use_dark=False)
# model settings
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
_scope_='mmdet',
type='CSPNeXt',
arch='P5',
expand_ratio=0.5,
deepen_factor=0.33,
widen_factor=0.5,
out_indices=(4, ),
channel_attention=True,
norm_cfg=dict(type='SyncBN'),
act_cfg=dict(type='SiLU'),
init_cfg=dict(
type='Pretrained',
prefix='backbone.',
checkpoint='https://download.openmmlab.com/mmdetection/v3.0/'
'rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e-ea671761.pth')
),
head=dict(
type='RTMCCHead',
in_channels=512,
out_channels=106,
input_size=codec['input_size'],
in_featuremap_size=tuple([s // 32 for s in codec['input_size']]),
simcc_split_ratio=codec['simcc_split_ratio'],
final_layer_kernel_size=7,
gau_cfg=dict(
hidden_dims=256,
s=128,
expansion_factor=2,
dropout_rate=0.,
drop_path=0.,
act_fn='SiLU',
use_rel_bias=False,
pos_enc=False),
loss=dict(
type='KLDiscretLoss',
use_target_weight=True,
beta=10.,
label_softmax=True),
decoder=codec),
test_cfg=dict(flip_test=True, ))
# base dataset settings
dataset_type = 'LapaDataset'
data_mode = 'topdown'
data_root = 'data/'
backend_args = dict(backend='local')
# pipelines
train_pipeline = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(
type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=80),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='mmdet.YOLOXHSVRandomAug'),
dict(
type='Albumentation',
transforms=[
dict(type='Blur', p=0.2),
dict(type='MedianBlur', p=0.2),
dict(
type='CoarseDropout',
max_holes=1,
max_height=0.4,
max_width=0.4,
min_holes=1,
min_height=0.2,
min_width=0.2,
p=1.0),
]),
dict(
type='GenerateTarget',
encoder=codec,
use_dataset_keypoint_weights=True),
dict(type='PackPoseInputs')
]
val_pipeline = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PackPoseInputs')
]
train_pipeline_stage2 = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(
type='RandomBBoxTransform',
shift_factor=0.,
scale_factor=[0.75, 1.25],
rotate_factor=60),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='mmdet.YOLOXHSVRandomAug'),
dict(
type='Albumentation',
transforms=[
dict(type='Blur', p=0.1),
dict(type='MedianBlur', p=0.1),
dict(
type='CoarseDropout',
max_holes=1,
max_height=0.4,
max_width=0.4,
min_holes=1,
min_height=0.2,
min_width=0.2,
p=0.5),
]),
dict(
type='GenerateTarget',
encoder=codec,
use_dataset_keypoint_weights=True),
dict(type='PackPoseInputs')
]
# train dataset
dataset_lapa = dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='LaPa/annotations/lapa_trainval.json',
data_prefix=dict(img='pose/LaPa/'),
pipeline=[],
)
kpt_68_to_106 = [
#
(0, 0),
(1, 2),
(2, 4),
(3, 6),
(4, 8),
(5, 10),
(6, 12),
(7, 14),
(8, 16),
(9, 18),
(10, 20),
(11, 22),
(12, 24),
(13, 26),
(14, 28),
(15, 30),
(16, 32),
#
(17, 33),
(18, 34),
(19, 35),
(20, 36),
(21, 37),
#
(22, 42),
(23, 43),
(24, 44),
(25, 45),
(26, 46),
#
(27, 51),
(28, 52),
(29, 53),
(30, 54),
#
(31, 58),
(32, 59),
(33, 60),
(34, 61),
(35, 62),
#
(36, 66),
(39, 70),
#
((37, 38), 68),
((40, 41), 72),
#
(42, 75),
(45, 79),
#
((43, 44), 77),
((46, 47), 81),
#
(48, 84),
(49, 85),
(50, 86),
(51, 87),
(52, 88),
(53, 89),
(54, 90),
(55, 91),
(56, 92),
(57, 93),
(58, 94),
(59, 95),
(60, 96),
(61, 97),
(62, 98),
(63, 99),
(64, 100),
(65, 101),
(66, 102),
(67, 103)
]
mapping_halpe = [
#
(26, 0),
(27, 2),
(28, 4),
(29, 6),
(30, 8),
(31, 10),
(32, 12),
(33, 14),
(34, 16),
(35, 18),
(36, 20),
(37, 22),
(38, 24),
(39, 26),
(40, 28),
(41, 30),
(42, 32),
#
(43, 33),
(44, 34),
(45, 35),
(46, 36),
(47, 37),
#
(48, 42),
(49, 43),
(50, 44),
(51, 45),
(52, 46),
#
(53, 51),
(54, 52),
(55, 53),
(56, 54),
#
(57, 58),
(58, 59),
(59, 60),
(60, 61),
(61, 62),
#
(62, 66),
(65, 70),
#
((63, 64), 68),
((66, 67), 72),
#
(68, 75),
(71, 79),
#
((69, 70), 77),
((72, 73), 81),
#
(74, 84),
(75, 85),
(76, 86),
(77, 87),
(78, 88),
(79, 89),
(80, 90),
(81, 91),
(82, 92),
(83, 93),
(84, 94),
(85, 95),
(86, 96),
(87, 97),
(88, 98),
(89, 99),
(90, 100),
(91, 101),
(92, 102),
(93, 103)
]
mapping_wflw = [
#
(0, 0),
(1, 1),
(2, 2),
(3, 3),
(4, 4),
(5, 5),
(6, 6),
(7, 7),
(8, 8),
(9, 9),
(10, 10),
(11, 11),
(12, 12),
(13, 13),
(14, 14),
(15, 15),
(16, 16),
(17, 17),
(18, 18),
(19, 19),
(20, 20),
(21, 21),
(22, 22),
(23, 23),
(24, 24),
(25, 25),
(26, 26),
(27, 27),
(28, 28),
(29, 29),
(30, 30),
(31, 31),
(32, 32),
#
(33, 33),
(34, 34),
(35, 35),
(36, 36),
(37, 37),
(38, 38),
(39, 39),
(40, 40),
(41, 41),
#
(42, 42),
(43, 43),
(44, 44),
(45, 45),
(46, 46),
(47, 47),
(48, 48),
(49, 49),
(50, 50),
#
(51, 51),
(52, 52),
(53, 53),
(54, 54),
#
(55, 58),
(56, 59),
(57, 60),
(58, 61),
(59, 62),
#
(60, 66),
(61, 67),
(62, 68),
(63, 69),
(64, 70),
(65, 71),
(66, 72),
(67, 73),
#
(68, 75),
(69, 76),
(70, 77),
(71, 78),
(72, 79),
(73, 80),
(74, 81),
(75, 82),
#
(76, 84),
(77, 85),
(78, 86),
(79, 87),
(80, 88),
(81, 89),
(82, 90),
(83, 91),
(84, 92),
(85, 93),
(86, 94),
(87, 95),
(88, 96),
(89, 97),
(90, 98),
(91, 99),
(92, 100),
(93, 101),
(94, 102),
(95, 103),
#
(96, 104),
#
(97, 105)
]
mapping_cofw = [
#
(0, 33),
(2, 38),
(4, 35),
(5, 40),
#
(1, 46),
(3, 50),
(6, 44),
(7, 48),
#
(8, 60),
(10, 64),
(12, 62),
(13, 66),
#
(9, 72),
(11, 68),
(14, 70),
(15, 74),
#
(18, 57),
(19, 63),
(20, 54),
(21, 60),
#
(22, 84),
(23, 90),
(24, 87),
(25, 98),
(26, 102),
(27, 93),
#
(28, 16)
]
dataset_coco = dict(
type='CocoWholeBodyFaceDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='coco/annotations/coco_wholebody_train_v1.0.json',
data_prefix=dict(img='detection/coco/train2017/'),
pipeline=[
dict(
type='KeypointConverter', num_keypoints=106, mapping=kpt_68_to_106)
],
)
dataset_wflw = dict(
type='WFLWDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='wflw/annotations/face_landmarks_wflw_train.json',
data_prefix=dict(img='pose/WFLW/images/'),
pipeline=[
dict(
type='KeypointConverter', num_keypoints=106, mapping=mapping_wflw)
],
)
dataset_300w = dict(
type='Face300WDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='300w/annotations/face_landmarks_300w_train.json',
data_prefix=dict(img='pose/300w/images/'),
pipeline=[
dict(
type='KeypointConverter', num_keypoints=106, mapping=kpt_68_to_106)
],
)
dataset_cofw = dict(
type='COFWDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='cofw/annotations/cofw_train.json',
data_prefix=dict(img='pose/COFW/images/'),
pipeline=[
dict(
type='KeypointConverter', num_keypoints=106, mapping=mapping_cofw)
],
)
dataset_halpe = dict(
type='HalpeDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='halpe/annotations/halpe_train_133kpt.json',
data_prefix=dict(img='pose/Halpe/hico_20160224_det/images/train2015/'),
pipeline=[
dict(
type='KeypointConverter', num_keypoints=106, mapping=mapping_halpe)
],
)
# data loaders
train_dataloader = dict(
batch_size=256,
num_workers=10,
pin_memory=True,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='CombinedDataset',
metainfo=dict(from_file='configs/_base_/datasets/lapa.py'),
datasets=[
dataset_lapa, dataset_coco, dataset_wflw, dataset_300w,
dataset_cofw, dataset_halpe
],
pipeline=train_pipeline,
test_mode=False,
))
val_dataloader = dict(
batch_size=32,
num_workers=10,
pin_memory=True,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='LaPa/annotations/lapa_test.json',
data_prefix=dict(img='pose/LaPa/'),
test_mode=True,
pipeline=val_pipeline,
))
# test dataset
val_lapa = dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='LaPa/annotations/lapa_test.json',
data_prefix=dict(img='pose/LaPa/'),
pipeline=[],
)
val_coco = dict(
type='CocoWholeBodyFaceDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='coco/annotations/coco_wholebody_val_v1.0.json',
data_prefix=dict(img='detection/coco/val2017/'),
pipeline=[
dict(
type='KeypointConverter', num_keypoints=106, mapping=kpt_68_to_106)
],
)
val_wflw = dict(
type='WFLWDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='wflw/annotations/face_landmarks_wflw_test.json',
data_prefix=dict(img='pose/WFLW/images/'),
pipeline=[
dict(
type='KeypointConverter', num_keypoints=106, mapping=mapping_wflw)
],
)
val_300w = dict(
type='Face300WDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='300w/annotations/face_landmarks_300w_test.json',
data_prefix=dict(img='pose/300w/images/'),
pipeline=[
dict(
type='KeypointConverter', num_keypoints=106, mapping=kpt_68_to_106)
],
)
val_cofw = dict(
type='COFWDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='cofw/annotations/cofw_test.json',
data_prefix=dict(img='pose/COFW/images/'),
pipeline=[
dict(
type='KeypointConverter', num_keypoints=106, mapping=mapping_cofw)
],
)
val_halpe = dict(
type='HalpeDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='halpe/annotations/halpe_val_v1.json',
data_prefix=dict(img='detection/coco/val2017/'),
pipeline=[
dict(
type='KeypointConverter', num_keypoints=106, mapping=mapping_halpe)
],
)
test_dataloader = dict(
batch_size=32,
num_workers=10,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type='CombinedDataset',
metainfo=dict(from_file='configs/_base_/datasets/lapa.py'),
datasets=[val_lapa, val_coco, val_wflw, val_300w, val_cofw, val_halpe],
pipeline=val_pipeline,
test_mode=True,
))
# hooks
default_hooks = dict(
checkpoint=dict(
save_best='NME', rule='less', max_keep_ckpts=1, interval=1))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='mmdet.PipelineSwitchHook',
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline=train_pipeline_stage2)
]
# evaluators
val_evaluator = dict(
type='NME',
norm_mode='keypoint_distance',
)
test_evaluator = val_evaluator