mirror of https://github.com/open-mmlab/mmpose
![]() |
||
---|---|---|
.. | ||
coco | ||
mpii | ||
README.md |
README.md
Top-down regression-based pose estimation
Top-down methods divide the task into two stages: object detection, followed by single-object pose estimation given object bounding boxes. At the 2nd stage, regression based methods directly regress the keypoint coordinates given the features extracted from the bounding box area, following the paradigm introduced in Deeppose: Human pose estimation via deep neural networks.

Results and Models
COCO Dataset
Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset
Model | Input Size | AP | AR | Details and Download |
---|---|---|---|---|
ResNet-152+RLE | 256x192 | 0.731 | 0.805 | resnet_rle_coco.md |
ResNet-101+RLE | 256x192 | 0.722 | 0.768 | resnet_rle_coco.md |
ResNet-50+RLE | 256x192 | 0.706 | 0.768 | resnet_rle_coco.md |
MobileNet-v2+RLE | 256x192 | 0.593 | 0.644 | mobilenetv2_rle_coco.md |
ResNet-152 | 256x192 | 0.584 | 0.688 | resnet_coco.md |
ResNet-101 | 256x192 | 0.562 | 0.670 | resnet_coco.md |
ResNet-50 | 256x192 | 0.528 | 0.639 | resnet_coco.md |
MPII Dataset
Model | Input Size | PCKh@0.5 | PCKh@0.1 | Details and Download |
---|---|---|---|---|
ResNet-50+RLE | 256x256 | 0.861 | 0.277 | resnet_rle_mpii.md |
ResNet-152 | 256x256 | 0.850 | 0.208 | resnet_mpii.md |
ResNet-101 | 256x256 | 0.841 | 0.200 | resnet_mpii.md |
ResNet-50 | 256x256 | 0.826 | 0.180 | resnet_mpii.md |