mmpose/configs/body_2d_keypoint/rtmpose/body8/rtmpose-s_8xb1024-700e_body...

536 lines
13 KiB
Python

_base_ = ['../../../_base_/default_runtime.py']
# common setting
num_keypoints = 26
input_size = (192, 256)
# runtime
max_epochs = 700
stage2_num_epochs = 30
base_lr = 4e-3
train_batch_size = 1024
val_batch_size = 64
train_cfg = dict(max_epochs=max_epochs, val_interval=10)
randomness = dict(seed=21)
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.0),
clip_grad=dict(max_norm=35, norm_type=2),
paramwise_cfg=dict(
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0e-5,
by_epoch=False,
begin=0,
end=1000),
dict(
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=max_epochs // 2,
end=max_epochs,
T_max=max_epochs // 2,
by_epoch=True,
convert_to_iter_based=True),
]
# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=1024)
# codec settings
codec = dict(
type='SimCCLabel',
input_size=input_size,
sigma=(4.9, 5.66),
simcc_split_ratio=2.0,
normalize=False,
use_dark=False)
# model settings
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
_scope_='mmdet',
type='CSPNeXt',
arch='P5',
expand_ratio=0.5,
deepen_factor=0.33,
widen_factor=0.5,
out_indices=(4, ),
channel_attention=True,
norm_cfg=dict(type='SyncBN'),
act_cfg=dict(type='SiLU'),
init_cfg=dict(
type='Pretrained',
prefix='backbone.',
checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
'rtmposev1/rtmpose-s_simcc-body7_pt-body7_420e-256x192-acd4a1ef_20230504.pth' # noqa
)),
head=dict(
type='RTMCCHead',
in_channels=512,
out_channels=num_keypoints,
input_size=input_size,
in_featuremap_size=tuple([s // 32 for s in input_size]),
simcc_split_ratio=codec['simcc_split_ratio'],
final_layer_kernel_size=7,
gau_cfg=dict(
hidden_dims=256,
s=128,
expansion_factor=2,
dropout_rate=0.,
drop_path=0.,
act_fn='SiLU',
use_rel_bias=False,
pos_enc=False),
loss=dict(
type='KLDiscretLoss',
use_target_weight=True,
beta=10.,
label_softmax=True),
decoder=codec),
test_cfg=dict(flip_test=True))
# base dataset settings
dataset_type = 'CocoWholeBodyDataset'
data_mode = 'topdown'
data_root = 'data/'
backend_args = dict(backend='local')
# pipelines
train_pipeline = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(
type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PhotometricDistortion'),
dict(
type='Albumentation',
transforms=[
dict(type='Blur', p=0.1),
dict(type='MedianBlur', p=0.1),
dict(
type='CoarseDropout',
max_holes=1,
max_height=0.4,
max_width=0.4,
min_holes=1,
min_height=0.2,
min_width=0.2,
p=1.0),
]),
dict(
type='GenerateTarget',
encoder=codec,
use_dataset_keypoint_weights=True),
dict(type='PackPoseInputs')
]
val_pipeline = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PackPoseInputs')
]
train_pipeline_stage2 = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(
type='RandomBBoxTransform',
shift_factor=0.,
scale_factor=[0.6, 1.4],
rotate_factor=80),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(
type='Albumentation',
transforms=[
dict(type='Blur', p=0.1),
dict(type='MedianBlur', p=0.1),
dict(
type='CoarseDropout',
max_holes=1,
max_height=0.4,
max_width=0.4,
min_holes=1,
min_height=0.2,
min_width=0.2,
p=0.5),
]),
dict(
type='GenerateTarget',
encoder=codec,
use_dataset_keypoint_weights=True),
dict(type='PackPoseInputs')
]
# mapping
coco_halpe26 = [(i, i) for i in range(17)] + [(17, 20), (18, 22), (19, 24),
(20, 21), (21, 23), (22, 25)]
aic_halpe26 = [(0, 6), (1, 8), (2, 10), (3, 5), (4, 7),
(5, 9), (6, 12), (7, 14), (8, 16), (9, 11), (10, 13), (11, 15),
(12, 17), (13, 18)]
crowdpose_halpe26 = [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10), (6, 11),
(7, 12), (8, 13), (9, 14), (10, 15), (11, 16), (12, 17),
(13, 18)]
mpii_halpe26 = [
(0, 16),
(1, 14),
(2, 12),
(3, 11),
(4, 13),
(5, 15),
(8, 18),
(9, 17),
(10, 10),
(11, 8),
(12, 6),
(13, 5),
(14, 7),
(15, 9),
]
jhmdb_halpe26 = [
(0, 18),
(2, 17),
(3, 6),
(4, 5),
(5, 12),
(6, 11),
(7, 8),
(8, 7),
(9, 14),
(10, 13),
(11, 10),
(12, 9),
(13, 16),
(14, 15),
]
halpe_halpe26 = [(i, i) for i in range(26)]
ochuman_halpe26 = [(i, i) for i in range(17)]
posetrack_halpe26 = [
(0, 0),
(2, 17),
(3, 3),
(4, 4),
(5, 5),
(6, 6),
(7, 7),
(8, 8),
(9, 9),
(10, 10),
(11, 11),
(12, 12),
(13, 13),
(14, 14),
(15, 15),
(16, 16),
]
# train datasets
dataset_coco = dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='coco/annotations/coco_wholebody_train_v1.0.json',
data_prefix=dict(img='detection/coco/train2017/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=coco_halpe26)
],
)
dataset_aic = dict(
type='AicDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='aic/annotations/aic_train.json',
data_prefix=dict(img='pose/ai_challenge/ai_challenger_keypoint'
'_train_20170902/keypoint_train_images_20170902/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=aic_halpe26)
],
)
dataset_crowdpose = dict(
type='CrowdPoseDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='crowdpose/annotations/mmpose_crowdpose_trainval.json',
data_prefix=dict(img='pose/CrowdPose/images/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=crowdpose_halpe26)
],
)
dataset_mpii = dict(
type='MpiiDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='mpii/annotations/mpii_train.json',
data_prefix=dict(img='pose/MPI/images/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=mpii_halpe26)
],
)
dataset_jhmdb = dict(
type='JhmdbDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='jhmdb/annotations/Sub1_train.json',
data_prefix=dict(img='pose/JHMDB/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=jhmdb_halpe26)
],
)
dataset_halpe = dict(
type='HalpeDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='halpe/annotations/halpe_train_v1.json',
data_prefix=dict(img='pose/Halpe/hico_20160224_det/images/train2015'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=halpe_halpe26)
],
)
dataset_posetrack = dict(
type='PoseTrack18Dataset',
data_root=data_root,
data_mode=data_mode,
ann_file='posetrack18/annotations/posetrack18_train.json',
data_prefix=dict(img='pose/PoseChallenge2018/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=posetrack_halpe26)
],
)
# data loaders
train_dataloader = dict(
batch_size=train_batch_size,
num_workers=10,
pin_memory=True,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='CombinedDataset',
metainfo=dict(from_file='configs/_base_/datasets/halpe26.py'),
datasets=[
dataset_coco,
dataset_aic,
dataset_crowdpose,
dataset_mpii,
dataset_jhmdb,
dataset_halpe,
dataset_posetrack,
],
pipeline=train_pipeline,
test_mode=False,
))
# val datasets
val_coco = dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='coco/annotations/coco_wholebody_val_v1.0.json',
data_prefix=dict(img='detection/coco/val2017/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=coco_halpe26)
],
)
val_aic = dict(
type='AicDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='aic/annotations/aic_val.json',
data_prefix=dict(
img='pose/ai_challenge/ai_challenger_keypoint'
'_validation_20170911/keypoint_validation_images_20170911/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=aic_halpe26)
],
)
val_crowdpose = dict(
type='CrowdPoseDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='crowdpose/annotations/mmpose_crowdpose_test.json',
data_prefix=dict(img='pose/CrowdPose/images/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=crowdpose_halpe26)
],
)
val_mpii = dict(
type='MpiiDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='mpii/annotations/mpii_val.json',
data_prefix=dict(img='pose/MPI/images/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=mpii_halpe26)
],
)
val_jhmdb = dict(
type='JhmdbDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='jhmdb/annotations/Sub1_test.json',
data_prefix=dict(img='pose/JHMDB/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=jhmdb_halpe26)
],
)
val_halpe = dict(
type='HalpeDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='halpe/annotations/halpe_val_v1.json',
data_prefix=dict(img='detection/coco/val2017/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=halpe_halpe26)
],
)
val_ochuman = dict(
type='OCHumanDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='ochuman/annotations/'
'ochuman_coco_format_val_range_0.00_1.00.json',
data_prefix=dict(img='pose/OCHuman/images/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=ochuman_halpe26)
],
)
val_posetrack = dict(
type='PoseTrack18Dataset',
data_root=data_root,
data_mode=data_mode,
ann_file='posetrack18/annotations/posetrack18_val.json',
data_prefix=dict(img='pose/PoseChallenge2018/'),
pipeline=[
dict(
type='KeypointConverter',
num_keypoints=num_keypoints,
mapping=posetrack_halpe26)
],
)
val_dataloader = dict(
batch_size=val_batch_size,
num_workers=10,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type='CombinedDataset',
metainfo=dict(from_file='configs/_base_/datasets/halpe26.py'),
datasets=[
val_coco,
val_aic,
val_crowdpose,
val_mpii,
val_jhmdb,
val_halpe,
val_ochuman,
val_posetrack,
],
pipeline=val_pipeline,
test_mode=True,
))
test_dataloader = val_dataloader
# hooks
default_hooks = dict(
checkpoint=dict(save_best='AUC', rule='greater', max_keep_ckpts=1))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='mmdet.PipelineSwitchHook',
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline=train_pipeline_stage2)
]
# evaluators
test_evaluator = [dict(type='PCKAccuracy', thr=0.1), dict(type='AUC')]
val_evaluator = test_evaluator