mirror of https://github.com/open-mmlab/mmpose
543 lines
14 KiB
Python
543 lines
14 KiB
Python
_base_ = ['../../../_base_/default_runtime.py']
|
|
|
|
# common setting
|
|
num_keypoints = 26
|
|
input_size = (288, 384)
|
|
|
|
# runtime
|
|
max_epochs = 700
|
|
stage2_num_epochs = 30
|
|
base_lr = 4e-3
|
|
train_batch_size = 512
|
|
val_batch_size = 64
|
|
|
|
train_cfg = dict(max_epochs=max_epochs, val_interval=10)
|
|
randomness = dict(seed=21)
|
|
|
|
# optimizer
|
|
optim_wrapper = dict(
|
|
type='OptimWrapper',
|
|
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
|
|
clip_grad=dict(max_norm=35, norm_type=2),
|
|
paramwise_cfg=dict(
|
|
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
|
|
|
# learning rate
|
|
param_scheduler = [
|
|
dict(
|
|
type='LinearLR',
|
|
start_factor=1.0e-5,
|
|
by_epoch=False,
|
|
begin=0,
|
|
end=1000),
|
|
dict(
|
|
type='CosineAnnealingLR',
|
|
eta_min=base_lr * 0.05,
|
|
begin=max_epochs // 2,
|
|
end=max_epochs,
|
|
T_max=max_epochs // 2,
|
|
by_epoch=True,
|
|
convert_to_iter_based=True),
|
|
]
|
|
|
|
# automatically scaling LR based on the actual training batch size
|
|
auto_scale_lr = dict(base_batch_size=1024)
|
|
|
|
# codec settings
|
|
codec = dict(
|
|
type='SimCCLabel',
|
|
input_size=input_size,
|
|
sigma=(6., 6.93),
|
|
simcc_split_ratio=2.0,
|
|
normalize=False,
|
|
use_dark=False)
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='TopdownPoseEstimator',
|
|
data_preprocessor=dict(
|
|
type='PoseDataPreprocessor',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
bgr_to_rgb=True),
|
|
backbone=dict(
|
|
_scope_='mmdet',
|
|
type='CSPNeXt',
|
|
arch='P5',
|
|
expand_ratio=0.5,
|
|
deepen_factor=0.67,
|
|
widen_factor=0.75,
|
|
out_indices=(4, ),
|
|
channel_attention=True,
|
|
norm_cfg=dict(type='SyncBN'),
|
|
act_cfg=dict(type='SiLU'),
|
|
init_cfg=dict(
|
|
type='Pretrained',
|
|
prefix='backbone.',
|
|
checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
|
|
'rtmposev1/rtmpose-m_simcc-body7_pt-body7_420e-384x288-65e718c4_20230504.pth' # noqa
|
|
)),
|
|
head=dict(
|
|
type='RTMCCHead',
|
|
in_channels=768,
|
|
out_channels=num_keypoints,
|
|
input_size=input_size,
|
|
in_featuremap_size=tuple([s // 32 for s in input_size]),
|
|
simcc_split_ratio=codec['simcc_split_ratio'],
|
|
final_layer_kernel_size=7,
|
|
gau_cfg=dict(
|
|
hidden_dims=256,
|
|
s=128,
|
|
expansion_factor=2,
|
|
dropout_rate=0.,
|
|
drop_path=0.,
|
|
act_fn='SiLU',
|
|
use_rel_bias=False,
|
|
pos_enc=False),
|
|
loss=dict(
|
|
type='KLDiscretLoss',
|
|
use_target_weight=True,
|
|
beta=10.,
|
|
label_softmax=True),
|
|
decoder=codec),
|
|
test_cfg=dict(flip_test=True))
|
|
|
|
# base dataset settings
|
|
dataset_type = 'CocoWholeBodyDataset'
|
|
data_mode = 'topdown'
|
|
data_root = 'data/'
|
|
|
|
# backend_args = dict(backend='local')
|
|
backend_args = dict(
|
|
backend='petrel',
|
|
path_mapping=dict({
|
|
f'{data_root}': 's3://openmmlab/datasets/',
|
|
f'{data_root}': 's3://openmmlab/datasets/'
|
|
}))
|
|
|
|
# pipelines
|
|
train_pipeline = [
|
|
dict(type='LoadImage', backend_args=backend_args),
|
|
dict(type='GetBBoxCenterScale'),
|
|
dict(type='RandomFlip', direction='horizontal'),
|
|
dict(type='RandomHalfBody'),
|
|
dict(
|
|
type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=90),
|
|
dict(type='TopdownAffine', input_size=codec['input_size']),
|
|
dict(type='PhotometricDistortion'),
|
|
dict(
|
|
type='Albumentation',
|
|
transforms=[
|
|
dict(type='Blur', p=0.1),
|
|
dict(type='MedianBlur', p=0.1),
|
|
dict(
|
|
type='CoarseDropout',
|
|
max_holes=1,
|
|
max_height=0.4,
|
|
max_width=0.4,
|
|
min_holes=1,
|
|
min_height=0.2,
|
|
min_width=0.2,
|
|
p=1.0),
|
|
]),
|
|
dict(
|
|
type='GenerateTarget',
|
|
encoder=codec,
|
|
use_dataset_keypoint_weights=True),
|
|
dict(type='PackPoseInputs')
|
|
]
|
|
val_pipeline = [
|
|
dict(type='LoadImage', backend_args=backend_args),
|
|
dict(type='GetBBoxCenterScale'),
|
|
dict(type='TopdownAffine', input_size=codec['input_size']),
|
|
dict(type='PackPoseInputs')
|
|
]
|
|
|
|
train_pipeline_stage2 = [
|
|
dict(type='LoadImage', backend_args=backend_args),
|
|
dict(type='GetBBoxCenterScale'),
|
|
dict(type='RandomFlip', direction='horizontal'),
|
|
dict(type='RandomHalfBody'),
|
|
dict(
|
|
type='RandomBBoxTransform',
|
|
shift_factor=0.,
|
|
scale_factor=[0.5, 1.5],
|
|
rotate_factor=90),
|
|
dict(type='TopdownAffine', input_size=codec['input_size']),
|
|
dict(
|
|
type='Albumentation',
|
|
transforms=[
|
|
dict(type='Blur', p=0.1),
|
|
dict(type='MedianBlur', p=0.1),
|
|
dict(
|
|
type='CoarseDropout',
|
|
max_holes=1,
|
|
max_height=0.4,
|
|
max_width=0.4,
|
|
min_holes=1,
|
|
min_height=0.2,
|
|
min_width=0.2,
|
|
p=0.5),
|
|
]),
|
|
dict(
|
|
type='GenerateTarget',
|
|
encoder=codec,
|
|
use_dataset_keypoint_weights=True),
|
|
dict(type='PackPoseInputs')
|
|
]
|
|
|
|
# mapping
|
|
coco_halpe26 = [(i, i) for i in range(17)] + [(17, 20), (18, 22), (19, 24),
|
|
(20, 21), (21, 23), (22, 25)]
|
|
|
|
aic_halpe26 = [(0, 6), (1, 8), (2, 10), (3, 5), (4, 7),
|
|
(5, 9), (6, 12), (7, 14), (8, 16), (9, 11), (10, 13), (11, 15),
|
|
(12, 17), (13, 18)]
|
|
|
|
crowdpose_halpe26 = [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10), (6, 11),
|
|
(7, 12), (8, 13), (9, 14), (10, 15), (11, 16), (12, 17),
|
|
(13, 18)]
|
|
|
|
mpii_halpe26 = [
|
|
(0, 16),
|
|
(1, 14),
|
|
(2, 12),
|
|
(3, 11),
|
|
(4, 13),
|
|
(5, 15),
|
|
(8, 18),
|
|
(9, 17),
|
|
(10, 10),
|
|
(11, 8),
|
|
(12, 6),
|
|
(13, 5),
|
|
(14, 7),
|
|
(15, 9),
|
|
]
|
|
|
|
jhmdb_halpe26 = [
|
|
(0, 18),
|
|
(2, 17),
|
|
(3, 6),
|
|
(4, 5),
|
|
(5, 12),
|
|
(6, 11),
|
|
(7, 8),
|
|
(8, 7),
|
|
(9, 14),
|
|
(10, 13),
|
|
(11, 10),
|
|
(12, 9),
|
|
(13, 16),
|
|
(14, 15),
|
|
]
|
|
|
|
halpe_halpe26 = [(i, i) for i in range(26)]
|
|
|
|
ochuman_halpe26 = [(i, i) for i in range(17)]
|
|
|
|
posetrack_halpe26 = [
|
|
(0, 0),
|
|
(2, 17),
|
|
(3, 3),
|
|
(4, 4),
|
|
(5, 5),
|
|
(6, 6),
|
|
(7, 7),
|
|
(8, 8),
|
|
(9, 9),
|
|
(10, 10),
|
|
(11, 11),
|
|
(12, 12),
|
|
(13, 13),
|
|
(14, 14),
|
|
(15, 15),
|
|
(16, 16),
|
|
]
|
|
|
|
# train datasets
|
|
dataset_coco = dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='coco/annotations/coco_wholebody_train_v1.0.json',
|
|
data_prefix=dict(img='detection/coco/train2017/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=coco_halpe26)
|
|
],
|
|
)
|
|
|
|
dataset_aic = dict(
|
|
type='AicDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='aic/annotations/aic_train.json',
|
|
data_prefix=dict(img='pose/ai_challenge/ai_challenger_keypoint'
|
|
'_train_20170902/keypoint_train_images_20170902/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=aic_halpe26)
|
|
],
|
|
)
|
|
|
|
dataset_crowdpose = dict(
|
|
type='CrowdPoseDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='crowdpose/annotations/mmpose_crowdpose_trainval.json',
|
|
data_prefix=dict(img='pose/CrowdPose/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=crowdpose_halpe26)
|
|
],
|
|
)
|
|
|
|
dataset_mpii = dict(
|
|
type='MpiiDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='mpii/annotations/mpii_train.json',
|
|
data_prefix=dict(img='pose/MPI/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=mpii_halpe26)
|
|
],
|
|
)
|
|
|
|
dataset_jhmdb = dict(
|
|
type='JhmdbDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='jhmdb/annotations/Sub1_train.json',
|
|
data_prefix=dict(img='pose/JHMDB/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=jhmdb_halpe26)
|
|
],
|
|
)
|
|
|
|
dataset_halpe = dict(
|
|
type='HalpeDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='halpe/annotations/halpe_train_v1.json',
|
|
data_prefix=dict(img='pose/Halpe/hico_20160224_det/images/train2015'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=halpe_halpe26)
|
|
],
|
|
)
|
|
|
|
dataset_posetrack = dict(
|
|
type='PoseTrack18Dataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='posetrack18/annotations/posetrack18_train.json',
|
|
data_prefix=dict(img='pose/PoseChallenge2018/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=posetrack_halpe26)
|
|
],
|
|
)
|
|
|
|
# data loaders
|
|
train_dataloader = dict(
|
|
batch_size=train_batch_size,
|
|
num_workers=10,
|
|
pin_memory=True,
|
|
persistent_workers=True,
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
dataset=dict(
|
|
type='CombinedDataset',
|
|
metainfo=dict(from_file='configs/_base_/datasets/halpe26.py'),
|
|
datasets=[
|
|
dataset_coco,
|
|
dataset_aic,
|
|
dataset_crowdpose,
|
|
dataset_mpii,
|
|
dataset_jhmdb,
|
|
dataset_halpe,
|
|
dataset_posetrack,
|
|
],
|
|
pipeline=train_pipeline,
|
|
test_mode=False,
|
|
))
|
|
|
|
# val datasets
|
|
val_coco = dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='coco/annotations/coco_wholebody_val_v1.0.json',
|
|
data_prefix=dict(img='detection/coco/val2017/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=coco_halpe26)
|
|
],
|
|
)
|
|
|
|
val_aic = dict(
|
|
type='AicDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='aic/annotations/aic_val.json',
|
|
data_prefix=dict(
|
|
img='pose/ai_challenge/ai_challenger_keypoint'
|
|
'_validation_20170911/keypoint_validation_images_20170911/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=aic_halpe26)
|
|
],
|
|
)
|
|
|
|
val_crowdpose = dict(
|
|
type='CrowdPoseDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='crowdpose/annotations/mmpose_crowdpose_test.json',
|
|
data_prefix=dict(img='pose/CrowdPose/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=crowdpose_halpe26)
|
|
],
|
|
)
|
|
|
|
val_mpii = dict(
|
|
type='MpiiDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='mpii/annotations/mpii_val.json',
|
|
data_prefix=dict(img='pose/MPI/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=mpii_halpe26)
|
|
],
|
|
)
|
|
|
|
val_jhmdb = dict(
|
|
type='JhmdbDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='jhmdb/annotations/Sub1_test.json',
|
|
data_prefix=dict(img='pose/JHMDB/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=jhmdb_halpe26)
|
|
],
|
|
)
|
|
|
|
val_halpe = dict(
|
|
type='HalpeDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='halpe/annotations/halpe_val_v1.json',
|
|
data_prefix=dict(img='detection/coco/val2017/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=halpe_halpe26)
|
|
],
|
|
)
|
|
|
|
val_ochuman = dict(
|
|
type='OCHumanDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='ochuman/annotations/'
|
|
'ochuman_coco_format_val_range_0.00_1.00.json',
|
|
data_prefix=dict(img='pose/OCHuman/images/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=ochuman_halpe26)
|
|
],
|
|
)
|
|
|
|
val_posetrack = dict(
|
|
type='PoseTrack18Dataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='posetrack18/annotations/posetrack18_val.json',
|
|
data_prefix=dict(img='pose/PoseChallenge2018/'),
|
|
pipeline=[
|
|
dict(
|
|
type='KeypointConverter',
|
|
num_keypoints=num_keypoints,
|
|
mapping=posetrack_halpe26)
|
|
],
|
|
)
|
|
|
|
val_dataloader = dict(
|
|
batch_size=val_batch_size,
|
|
num_workers=10,
|
|
persistent_workers=True,
|
|
drop_last=False,
|
|
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
|
|
dataset=dict(
|
|
type='CombinedDataset',
|
|
metainfo=dict(from_file='configs/_base_/datasets/halpe26.py'),
|
|
datasets=[
|
|
val_coco,
|
|
val_aic,
|
|
val_crowdpose,
|
|
val_mpii,
|
|
val_jhmdb,
|
|
val_halpe,
|
|
val_ochuman,
|
|
val_posetrack,
|
|
],
|
|
pipeline=val_pipeline,
|
|
test_mode=True,
|
|
))
|
|
|
|
test_dataloader = val_dataloader
|
|
|
|
# hooks
|
|
# default_hooks = dict(
|
|
default_hooks = dict(
|
|
checkpoint=dict(save_best='AUC', rule='greater', max_keep_ckpts=1))
|
|
|
|
custom_hooks = [
|
|
dict(
|
|
type='EMAHook',
|
|
ema_type='ExpMomentumEMA',
|
|
momentum=0.0002,
|
|
update_buffers=True,
|
|
priority=49),
|
|
dict(
|
|
type='mmdet.PipelineSwitchHook',
|
|
switch_epoch=max_epochs - stage2_num_epochs,
|
|
switch_pipeline=train_pipeline_stage2)
|
|
]
|
|
|
|
# evaluators
|
|
test_evaluator = [dict(type='PCKAccuracy', thr=0.1), dict(type='AUC')]
|
|
val_evaluator = test_evaluator
|