mmengine/tests/test_runner/test_activation_checkpointi...

56 lines
1.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
import torch.nn.functional as F
from torch import nn
from mmengine.runner.activation_checkpointing import \
turn_on_activation_checkpointing
from mmengine.testing import assert_allclose
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(16)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(64, 10)
def forward(self, x):
x = self.bn1(self.conv1(x))
x = F.relu(x)
x = self.bn2(self.conv2(x))
x = F.relu(x)
x = self.bn3(self.conv3(x))
x = F.relu(x)
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class TestActivationCheckpointing(TestCase):
def test_activation_checkpointing(self):
model = Model()
input = torch.randn(16, 3, 224, 224)
input.requires_grad = True
output = model(input)
output.sum().backward()
grad = input.grad.clone()
turn_on_activation_checkpointing(model, ['conv1', 'conv2', 'conv3'])
output2 = model(input)
output2.sum().backward()
grad2 = input.grad.clone()
assert_allclose(output, output2)
assert_allclose(grad, grad2, rtol=1e-3, atol=1e-3)