Security_Code/deeplearning/zhengfangjiaowu-master/cnn_dama.py

95 lines
2.4 KiB
Python

# coding:utf-8
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
num_classes = 36
batch_size = 128
epochs = 1266
# 输入图片尺寸
img_rows, img_cols = 12, 22
if K.image_data_format() == 'channels_first':
input_shape = (1, img_rows, img_cols)
else:
input_shape = (img_rows, img_cols, 1)
import os
os.chdir(r'./train_pictures')
import string
CHRS = string.ascii_lowercase + string.digits
from PIL import Image
import numpy as np
import glob
X, Y = [], []
for f in glob.glob('*.png')[:]:
image = Image.open(f)
im = image.point(lambda i: i != 43, mode='1')
y_min, y_max = 0, 22
split_lines = [5,17,29,41,53]
ims = [im.crop([u, y_min, v, y_max]) for u, v in zip(split_lines[:-1], split_lines[1:])]
name = f.split('.')[0]
for i, im in enumerate(ims):
t = 1.0 * np.array(im)
t = t.reshape(*input_shape)
X.append(t) # 验证码像素列表
s = name[i]
Y.append(CHRS.index(s)) # 验证码字符
X = np.stack(X)
Y = np.stack(Y)
Y = keras.utils.to_categorical(Y, num_classes)
split_point = 3000
x_train, y_train, x_test, y_test = X[:split_point], Y[:split_point], X[split_point:], Y[split_point:]
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
model.save('../ok.h5')
################
# 模型加载
# img_rows, img_cols = 12, 22
# if K.image_data_format() == 'channels_first':
# input_shape = (1, img_rows, img_cols)
# else:
# input_shape = (img_rows, img_cols, 1)
# import string
# CHRS = string.ascii_lowercase + string.digits
# model = keras.models.load_model(r'.../xx.h5')