357 lines
10 KiB
Python
357 lines
10 KiB
Python
# coding:utf-8
|
||
from PIL import Image
|
||
from pytesseract import *
|
||
from fnmatch import fnmatch
|
||
from queue import Queue
|
||
import matplotlib.pyplot as plt
|
||
|
||
import cv2.cv2 as cv2
|
||
import time
|
||
import os
|
||
import sys
|
||
reload(sys)
|
||
sys.setdefaultencoding('utf-8')
|
||
|
||
|
||
|
||
|
||
|
||
def clear_border(img,img_name):
|
||
'''去除边框
|
||
'''
|
||
|
||
filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
|
||
h, w = img.shape[:2]
|
||
for y in range(0, w):
|
||
for x in range(0, h):
|
||
# if y ==0 or y == w -1 or y == w - 2:
|
||
if y < 4 or y > w -4:
|
||
img[x, y] = 255
|
||
# if x == 0 or x == h - 1 or x == h - 2:
|
||
if x < 4 or x > h - 4:
|
||
img[x, y] = 255
|
||
|
||
cv2.imwrite(filename,img)
|
||
return img
|
||
|
||
|
||
def interference_line(img, img_name):
|
||
'''
|
||
干扰线降噪
|
||
'''
|
||
|
||
filename = './out_img/' + img_name.split('.')[0] + '-interferenceline.jpg'
|
||
h, w = img.shape[:2]
|
||
# !!!opencv矩阵点是反的
|
||
# img[1,2] 1:图片的高度,2:图片的宽度
|
||
for y in range(1, w - 1):
|
||
for x in range(1, h - 1):
|
||
count = 0
|
||
if img[x, y - 1] > 245:
|
||
count = count + 1
|
||
if img[x, y + 1] > 245:
|
||
count = count + 1
|
||
if img[x - 1, y] > 245:
|
||
count = count + 1
|
||
if img[x + 1, y] > 245:
|
||
count = count + 1
|
||
if count > 2:
|
||
img[x, y] = 255
|
||
cv2.imwrite(filename,img)
|
||
return img
|
||
|
||
def interference_point(img,img_name, x = 0, y = 0):
|
||
"""点降噪
|
||
9邻域框,以当前点为中心的田字框,黑点个数
|
||
:param x:
|
||
:param y:
|
||
:return:
|
||
"""
|
||
filename = './out_img/' + img_name.split('.')[0] + '-interferencePoint.jpg'
|
||
# todo 判断图片的长宽度下限
|
||
cur_pixel = img[x,y]# 当前像素点的值
|
||
height,width = img.shape[:2]
|
||
|
||
for y in range(0, width - 1):
|
||
for x in range(0, height - 1):
|
||
if y == 0: # 第一行
|
||
if x == 0: # 左上顶点,4邻域
|
||
# 中心点旁边3个点
|
||
sum = int(cur_pixel) \
|
||
+ int(img[x, y + 1]) \
|
||
+ int(img[x + 1, y]) \
|
||
+ int(img[x + 1, y + 1])
|
||
if sum <= 2 * 245:
|
||
img[x, y] = 0
|
||
elif x == height - 1: # 右上顶点
|
||
sum = int(cur_pixel) \
|
||
+ int(img[x, y + 1]) \
|
||
+ int(img[x - 1, y]) \
|
||
+ int(img[x - 1, y + 1])
|
||
if sum <= 2 * 245:
|
||
img[x, y] = 0
|
||
else: # 最上非顶点,6邻域
|
||
sum = int(img[x - 1, y]) \
|
||
+ int(img[x - 1, y + 1]) \
|
||
+ int(cur_pixel) \
|
||
+ int(img[x, y + 1]) \
|
||
+ int(img[x + 1, y]) \
|
||
+ int(img[x + 1, y + 1])
|
||
if sum <= 3 * 245:
|
||
img[x, y] = 0
|
||
elif y == width - 1: # 最下面一行
|
||
if x == 0: # 左下顶点
|
||
# 中心点旁边3个点
|
||
sum = int(cur_pixel) \
|
||
+ int(img[x + 1, y]) \
|
||
+ int(img[x + 1, y - 1]) \
|
||
+ int(img[x, y - 1])
|
||
if sum <= 2 * 245:
|
||
img[x, y] = 0
|
||
elif x == height - 1: # 右下顶点
|
||
sum = int(cur_pixel) \
|
||
+ int(img[x, y - 1]) \
|
||
+ int(img[x - 1, y]) \
|
||
+ int(img[x - 1, y - 1])
|
||
|
||
if sum <= 2 * 245:
|
||
img[x, y] = 0
|
||
else: # 最下非顶点,6邻域
|
||
sum = int(cur_pixel) \
|
||
+ int(img[x - 1, y]) \
|
||
+ int(img[x + 1, y]) \
|
||
+ int(img[x, y - 1]) \
|
||
+ int(img[x - 1, y - 1]) \
|
||
+ int(img[x + 1, y - 1])
|
||
if sum <= 3 * 245:
|
||
img[x, y] = 0
|
||
else: # y不在边界
|
||
if x == 0: # 左边非顶点
|
||
sum = int(img[x, y - 1]) \
|
||
+ int(cur_pixel) \
|
||
+ int(img[x, y + 1]) \
|
||
+ int(img[x + 1, y - 1]) \
|
||
+ int(img[x + 1, y]) \
|
||
+ int(img[x + 1, y + 1])
|
||
|
||
if sum <= 3 * 245:
|
||
img[x, y] = 0
|
||
elif x == height - 1: # 右边非顶点
|
||
sum = int(img[x, y - 1]) \
|
||
+ int(cur_pixel) \
|
||
+ int(img[x, y + 1]) \
|
||
+ int(img[x - 1, y - 1]) \
|
||
+ int(img[x - 1, y]) \
|
||
+ int(img[x - 1, y + 1])
|
||
|
||
if sum <= 3 * 245:
|
||
img[x, y] = 0
|
||
else: # 具备9领域条件的
|
||
sum = int(img[x - 1, y - 1]) \
|
||
+ int(img[x - 1, y]) \
|
||
+ int(img[x - 1, y + 1]) \
|
||
+ int(img[x, y - 1]) \
|
||
+ int(cur_pixel) \
|
||
+ int(img[x, y + 1]) \
|
||
+ int(img[x + 1, y - 1]) \
|
||
+ int(img[x + 1, y]) \
|
||
+ int(img[x + 1, y + 1])
|
||
if sum <= 4 * 245:
|
||
img[x, y] = 0
|
||
cv2.imwrite(filename,img)
|
||
return img
|
||
|
||
def _get_dynamic_binary_image(filedir, img_name):
|
||
'''
|
||
自适应阀值二值化
|
||
'''
|
||
|
||
filename = './out_img/' + img_name.split('.')[0] + '-binary.jpg'
|
||
img_name = filedir + '/' + img_name
|
||
print('.....' + img_name)
|
||
im = cv2.imread(img_name)
|
||
im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
|
||
|
||
th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
|
||
cv2.imwrite(filename,th1)
|
||
return th1
|
||
|
||
def _get_static_binary_image(img, threshold = 140):
|
||
'''
|
||
手动二值化
|
||
'''
|
||
|
||
img = Image.open(img)
|
||
img = img.convert('L')
|
||
pixdata = img.load()
|
||
w, h = img.size
|
||
for y in range(h):
|
||
for x in range(w):
|
||
if pixdata[x, y] < threshold:
|
||
pixdata[x, y] = 0
|
||
else:
|
||
pixdata[x, y] = 255
|
||
|
||
return img
|
||
|
||
|
||
def cfs(im,x_fd,y_fd):
|
||
'''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
|
||
'''
|
||
|
||
# print('**********')
|
||
|
||
xaxis=[]
|
||
yaxis=[]
|
||
visited =set()
|
||
q = Queue()
|
||
q.put((x_fd, y_fd))
|
||
visited.add((x_fd, y_fd))
|
||
offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域
|
||
|
||
while not q.empty():
|
||
x,y=q.get()
|
||
|
||
for xoffset,yoffset in offsets:
|
||
x_neighbor,y_neighbor = x+xoffset,y+yoffset
|
||
|
||
if (x_neighbor,y_neighbor) in (visited):
|
||
continue # 已经访问过了
|
||
|
||
visited.add((x_neighbor, y_neighbor))
|
||
|
||
try:
|
||
if im[x_neighbor, y_neighbor] == 0:
|
||
xaxis.append(x_neighbor)
|
||
yaxis.append(y_neighbor)
|
||
q.put((x_neighbor,y_neighbor))
|
||
|
||
except IndexError:
|
||
pass
|
||
# print(xaxis)
|
||
if (len(xaxis) == 0 | len(yaxis) == 0):
|
||
xmax = x_fd + 1
|
||
xmin = x_fd
|
||
ymax = y_fd + 1
|
||
ymin = y_fd
|
||
|
||
else:
|
||
xmax = max(xaxis)
|
||
xmin = min(xaxis)
|
||
ymax = max(yaxis)
|
||
ymin = min(yaxis)
|
||
#ymin,ymax=sort(yaxis)
|
||
|
||
return ymax,ymin,xmax,xmin
|
||
|
||
def detectFgPix(im,xmax):
|
||
'''搜索区块起点
|
||
'''
|
||
|
||
h,w = im.shape[:2]
|
||
for y_fd in range(xmax+1,w):
|
||
for x_fd in range(h):
|
||
if im[x_fd,y_fd] == 0:
|
||
return x_fd,y_fd
|
||
|
||
def CFS(im):
|
||
'''切割字符位置
|
||
'''
|
||
|
||
zoneL=[]#各区块长度L列表
|
||
zoneWB=[]#各区块的X轴[起始,终点]列表
|
||
zoneHB=[]#各区块的Y轴[起始,终点]列表
|
||
|
||
xmax=0#上一区块结束黑点横坐标,这里是初始化
|
||
for i in range(10):
|
||
|
||
try:
|
||
x_fd,y_fd = detectFgPix(im,xmax)
|
||
# print(y_fd,x_fd)
|
||
xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
|
||
L = xmax - xmin
|
||
H = ymax - ymin
|
||
zoneL.append(L)
|
||
zoneWB.append([xmin,xmax])
|
||
zoneHB.append([ymin,ymax])
|
||
|
||
except TypeError:
|
||
return zoneL,zoneWB,zoneHB
|
||
|
||
return zoneL,zoneWB,zoneHB
|
||
|
||
|
||
def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
|
||
filename = './out_img/' + img.split('.')[0]
|
||
# 识别出的字符个数
|
||
im_number = len(im_position[1])
|
||
# 切割字符
|
||
for i in range(im_number):
|
||
im_start_X = im_position[1][i][0] - xoffset
|
||
im_end_X = im_position[1][i][1] + xoffset
|
||
im_start_Y = im_position[2][i][0] - yoffset
|
||
im_end_Y = im_position[2][i][1] + yoffset
|
||
cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
|
||
cv2.imwrite(filename + '-cutting-' + str(i) + '.jpg',cropped)
|
||
|
||
|
||
|
||
def main():
|
||
filedir = './easy_img'
|
||
|
||
for file in os.listdir(filedir):
|
||
if fnmatch(file, '*.jpeg'):
|
||
img_name = file
|
||
|
||
# 自适应阈值二值化
|
||
im = _get_dynamic_binary_image(filedir, img_name)
|
||
|
||
# 去除边框
|
||
im = clear_border(im,img_name)
|
||
|
||
# 对图片进行干扰线降噪
|
||
im = interference_line(im,img_name)
|
||
|
||
# 对图片进行点降噪
|
||
im = interference_point(im,img_name)
|
||
|
||
# 切割的位置
|
||
im_position = CFS(im)
|
||
|
||
maxL = max(im_position[0])
|
||
minL = min(im_position[0])
|
||
|
||
# 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割
|
||
if(maxL > minL + minL * 0.7):
|
||
maxL_index = im_position[0].index(maxL)
|
||
minL_index = im_position[0].index(minL)
|
||
# 设置字符的宽度
|
||
im_position[0][maxL_index] = maxL // 2
|
||
im_position[0].insert(maxL_index + 1, maxL // 2)
|
||
# 设置字符X轴[起始,终点]位置
|
||
im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2
|
||
im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])
|
||
# 设置字符的Y轴[起始,终点]位置
|
||
im_position[2].insert(maxL_index + 1, im_position[2][maxL_index])
|
||
|
||
# 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以
|
||
cutting_img(im,im_position,img_name,1,1)
|
||
|
||
# 识别验证码
|
||
cutting_img_num = 0
|
||
for file in os.listdir('./out_img'):
|
||
str_img = ''
|
||
if fnmatch(file, '%s-cutting-*.jpg' % img_name.split('.')[0]):
|
||
cutting_img_num += 1
|
||
for i in range(cutting_img_num):
|
||
try:
|
||
file = './out_img/%s-cutting-%s.jpg' % (img_name.split('.')[0], i)
|
||
# 识别验证码
|
||
str_img = str_img + image_to_string(Image.open(file),lang = 'eng', config='-psm 10') #单个字符是10,一行文本是7
|
||
except Exception as err:
|
||
pass
|
||
print('切图:%s' % cutting_img_num)
|
||
print('识别为:%s' % str_img)
|
||
|
||
if __name__ == '__main__':
|
||
main() |