201 lines
7.2 KiB
Python
201 lines
7.2 KiB
Python
#coding:utf-8
|
||
from gen_captcha import gen_captcha_text_and_image
|
||
from gen_captcha import number
|
||
from gen_captcha import alphabet
|
||
from gen_captcha import ALPHABET
|
||
import os
|
||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||
import numpy as np
|
||
import tensorflow as tf
|
||
|
||
text, image = gen_captcha_text_and_image() #先生成验证码和文字测试模块是否完全
|
||
print("验证码图像channel:", image.shape) # (60, 160, 3)
|
||
# 图像大小
|
||
IMAGE_HEIGHT = 60
|
||
IMAGE_WIDTH = 160
|
||
MAX_CAPTCHA = len(text)
|
||
print("验证码文本最长字符数", MAX_CAPTCHA) # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐
|
||
|
||
# 把彩色图像转为灰度图像(色彩对识别验证码没有什么用)
|
||
def convert2gray(img):
|
||
if len(img.shape) > 2:
|
||
gray = np.mean(img, -1)
|
||
# 上面的转法较快,正规转法如下
|
||
# r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
|
||
# gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
|
||
return gray
|
||
else:
|
||
return img
|
||
|
||
"""
|
||
cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。
|
||
np.pad(image【,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在图像上补2行,下补3行,左补2行,右补2行
|
||
"""
|
||
|
||
# 文本转向量
|
||
char_set = number + alphabet + ALPHABET + ['_'] # 如果验证码长度小于4, '_'用来补齐
|
||
CHAR_SET_LEN = len(char_set)
|
||
def text2vec(text):
|
||
text_len = len(text)
|
||
if text_len > MAX_CAPTCHA:
|
||
raise ValueError('验证码最长4个字符')
|
||
|
||
vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
|
||
def char2pos(c):
|
||
if c =='_':
|
||
k = 62
|
||
return k
|
||
k = ord(c)-48
|
||
if k > 9:
|
||
k = ord(c) - 55
|
||
if k > 35:
|
||
k = ord(c) - 61
|
||
if k > 61:
|
||
raise ValueError('No Map')
|
||
return k
|
||
for i, c in enumerate(text):
|
||
idx = i * CHAR_SET_LEN + char2pos(c)
|
||
vector[idx] = 1
|
||
return vector
|
||
# 向量转回文本
|
||
def vec2text(vec):
|
||
char_pos = vec.nonzero()[0]
|
||
text=[]
|
||
for i, c in enumerate(char_pos):
|
||
char_at_pos = i #c/63
|
||
char_idx = c % CHAR_SET_LEN
|
||
if char_idx < 10:
|
||
char_code = char_idx + ord('0')
|
||
elif char_idx < 36:
|
||
char_code = char_idx - 10 + ord('A')
|
||
elif char_idx < 62:
|
||
char_code = char_idx- 36 + ord('a')
|
||
elif char_idx == 62:
|
||
char_code = ord('_')
|
||
else:
|
||
raise ValueError('error')
|
||
text.append(chr(char_code))
|
||
return "".join(text)
|
||
|
||
"""
|
||
#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有
|
||
vec = text2vec("F5Sd")
|
||
text = vec2text(vec)
|
||
print(text) # F5Sd
|
||
vec = text2vec("SFd5")
|
||
text = vec2text(vec)
|
||
print(text) # SFd5
|
||
"""
|
||
|
||
# 生成一个训练batch
|
||
def get_next_batch(batch_size=128):
|
||
batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])
|
||
batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])
|
||
|
||
# 有时生成图像大小不是(60, 160, 3)
|
||
def wrap_gen_captcha_text_and_image():
|
||
''' 获取一张图,判断其是否符合(60,160,3)的规格'''
|
||
while True:
|
||
text, image = gen_captcha_text_and_image()
|
||
if image.shape == (60, 160, 3):#此部分应该与开头部分图片宽高吻合
|
||
return text, image
|
||
|
||
for i in range(batch_size):
|
||
text, image = wrap_gen_captcha_text_and_image()
|
||
image = convert2gray(image)
|
||
|
||
# 将图片数组一维化 同时将文本也对应在两个二维组的同一行
|
||
batch_x[i,:] = image.flatten() / 255 # (image.flatten()-128)/128 mean为0
|
||
batch_y[i,:] = text2vec(text)
|
||
# 返回该训练批次
|
||
return batch_x, batch_y
|
||
|
||
####################################################################
|
||
# 申请占位符 按照图片
|
||
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])
|
||
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])
|
||
keep_prob = tf.placeholder(tf.float32) # dropout
|
||
|
||
# 定义CNN
|
||
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
|
||
# 将占位符 转换为 按照图片给的新样式
|
||
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
|
||
|
||
#w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
|
||
#w_c2_alpha = np.sqrt(2.0/(3*3*32))
|
||
#w_c3_alpha = np.sqrt(2.0/(3*3*64))
|
||
#w_d1_alpha = np.sqrt(2.0/(8*32*64))
|
||
#out_alpha = np.sqrt(2.0/1024)
|
||
|
||
# 3 conv layer
|
||
w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32])) # 从正太分布输出随机值
|
||
b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
|
||
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
|
||
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
|
||
conv1 = tf.nn.dropout(conv1, keep_prob)
|
||
|
||
w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64]))
|
||
b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))
|
||
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
|
||
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
|
||
conv2 = tf.nn.dropout(conv2, keep_prob)
|
||
|
||
w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))
|
||
b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))
|
||
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
|
||
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
|
||
conv3 = tf.nn.dropout(conv3, keep_prob)
|
||
|
||
# Fully connected layer
|
||
w_d = tf.Variable(w_alpha*tf.random_normal([8*20*64, 1024]))
|
||
b_d = tf.Variable(b_alpha*tf.random_normal([1024]))
|
||
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
|
||
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
|
||
dense = tf.nn.dropout(dense, keep_prob)
|
||
|
||
w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))
|
||
b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))
|
||
out = tf.add(tf.matmul(dense, w_out), b_out)
|
||
#out = tf.nn.softmax(out)
|
||
return out
|
||
|
||
# 训练
|
||
def train_crack_captcha_cnn():
|
||
save_path_full = os.path.join(save_path, model_name)
|
||
output = crack_captcha_cnn()
|
||
#loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
|
||
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
|
||
# 最后一层用来分类的softmax和sigmoid有什么不同?
|
||
# optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
|
||
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
|
||
|
||
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
|
||
max_idx_p = tf.argmax(predict, 2)
|
||
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
|
||
correct_pred = tf.equal(max_idx_p, max_idx_l)
|
||
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
|
||
|
||
saver = tf.train.Saver()
|
||
with tf.Session() as sess:
|
||
sess.run(tf.global_variables_initializer())
|
||
|
||
step = 0
|
||
while True:
|
||
batch_x, batch_y = get_next_batch(64)
|
||
_, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
|
||
print(step, loss_)
|
||
|
||
# 每100 step计算一次准确率
|
||
if step % 100 == 0:
|
||
batch_x_test, batch_y_test = get_next_batch(100)
|
||
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
|
||
print(step, acc)
|
||
# 如果准确率大于50%,保存模型,完成训练
|
||
if acc > 0.5:
|
||
#saver.save(sess, save_path_full, global_step=step)
|
||
saver.save(sess, "crack_capcha.model", global_step=step)
|
||
break
|
||
step += 1
|
||
|
||
train_crack_captcha_cnn()
|