tensorlayer3/docs/user/get_start_advance.rst

248 lines
7.3 KiB
ReStructuredText

.. _getstartadvance:
==================
Advanced features
==================
Customizing layer
==================
Layers with weights
----------------------
The fully-connected layer is `a = f(x*W+b)`, the most simple implementation is as follow.
.. code-block:: python
from tensorlayer.layers import Module
class Dense(Module):
"""The :class:`Dense` class is a fully connected layer.
Parameters
----------
n_units : int
The number of units of this layer.
act : activation function
The activation function of this layer.
name : None or str
A unique layer name. If None, a unique name will be automatically generated.
"""
def __init__(
self,
n_units, # the number of units/channels of this layer
act=None, # None: no activation, tf.nn.relu or 'relu': ReLU ...
name=None, # the name of this layer (optional)
in_channels = None
):
super(Dense, self).__init__(name, act=act) # auto naming, dense_1, dense_2 ...
self.n_units = n_units
self.in_channels = in_channels
self.build()
self._built = True
def build(self): # initialize the model weights here
shape = [self.in_channels, self.n_units]
self.W = self._get_weights("weights", shape=tuple(shape), init=self.W_init)
self.b = self._get_weights("biases", shape=(self.n_units, ), init=self.b_init)
def forward(self, inputs): # call function
z = tf.matmul(inputs, self.W) + self.b
if self.act: # is not None
z = self.act(z)
return z
The full implementation is as follow, which supports both automatic inference input and dynamic models and allows users to control whether to use the bias, how to initialize the weight values.
.. code-block:: python
class Dense(Module):
"""The :class:`Dense` class is a fully connected layer.
Parameters
----------
n_units : int
The number of units of this layer.
act : activation function
The activation function of this layer.
W_init : initializer
The initializer for the weight matrix.
b_init : initializer or None
The initializer for the bias vector. If None, skip biases.
in_channels: int
The number of channels of the previous layer.
If None, it will be automatically detected when the layer is forwarded for the first time.
name : None or str
A unique layer name. If None, a unique name will be automatically generated.
Examples
--------
With TensorLayer
>>> net = tl.layers.Input([100, 50], name='input')
>>> dense = tl.layers.Dense(n_units=800, act=tl.ReLU, in_channels=50, name='dense_1')
>>> print(dense)
Dense(n_units=800, relu, in_channels='50', name='dense_1')
>>> tensor = tl.layers.Dense(n_units=800, act=tl.ReLU, name='dense_2')(net)
>>> print(tensor)
tf.Tensor([...], shape=(100, 800), dtype=float32)
Notes
-----
If the layer input has more than two axes, it needs to be flatten by using :class:`Flatten`.
"""
def __init__(
self,
n_units,
act=None,
W_init=tl.initializers.truncated_normal(stddev=0.05),
b_init=tl.initializers.constant(value=0.0),
in_channels=None,
name=None, # 'dense',
):
super(Dense, self).__init__(name, act=act)
self.n_units = n_units
self.W_init = W_init
self.b_init = b_init
self.in_channels = in_channels
if self.in_channels is not None:
self.build(self.in_channels)
self._built = True
logging.info(
"Dense %s: %d %s" %
(self.name, self.n_units, self.act.__class__.__name__ if self.act is not None else 'No Activation')
)
def __repr__(self):
actstr = self.act.__class__.__name__ if self.act is not None else 'No Activation'
s = ('{classname}(n_units={n_units}, ' + actstr)
if self.in_channels is not None:
s += ', in_channels=\'{in_channels}\''
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)
def build(self, inputs_shape):
if self.in_channels is None and len(inputs_shape) != 2:
raise AssertionError("The input dimension must be rank 2, please reshape or flatten it")
if self.in_channels:
shape = [self.in_channels, self.n_units]
else:
self.in_channels = inputs_shape[1]
shape = [inputs_shape[1], self.n_units]
self.W = self._get_weights("weights", shape=tuple(shape), init=self.W_init)
self.b_init_flag = False
if self.b_init:
self.b = self._get_weights("biases", shape=(self.n_units, ), init=self.b_init)
self.b_init_flag = True
self.bias_add = tl.ops.BiasAdd()
self.act_init_flag = False
if self.act:
self.act_init_flag = True
self.matmul = tl.ops.MatMul()
def forward(self, inputs):
if self._forward_state == False:
if self._built == False:
self.build(tl.get_tensor_shape(inputs))
self._built = True
self._forward_state = True
z = self.matmul(inputs, self.W)
if self.b_init_flag:
z = self.bias_add(z, self.b)
if self.act_init_flag:
z = self.act(z)
return z
Layers with train/test modes
------------------------------
We use Dropout as an example here:
.. code-block:: python
class Dropout(Module):
"""
The :class:`Dropout` class is a noise layer which randomly set some
activations to zero according to a keeping probability.
Parameters
----------
keep : float
The keeping probability.
The lower the probability it is, the more activations are set to zero.
seed : int or None
The seed for random dropout.
name : None or str
A unique layer name.
Examples
--------
>>> net = tl.layers.Input([10, 200])
>>> net = tl.layers.Dropout(keep=0.2)(net)
"""
def __init__(self, keep, seed=0, name=None): #"dropout"):
super(Dropout, self).__init__(name)
self.keep = keep
self.seed = seed
self.build()
self._built = True
logging.info("Dropout %s: keep: %f " % (self.name, self.keep))
def __repr__(self):
s = ('{classname}(keep={keep}')
if self.name is not None:
s += ', name=\'{name}\''
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)
def build(self, inputs_shape=None):
self.dropout = tl.ops.Dropout(keep=self.keep, seed=self.seed)
def forward(self, inputs):
if self.is_train:
outputs = self.dropout(inputs)
else:
outputs = inputs
return outputs
Pre-trained CNN
================
Get entire CNN
---------------
.. code-block:: python
import tensorlayer as tl
import numpy as np
from tensorlayer.models.imagenet_classes import class_names
from examples.model_zoo import vgg16
vgg = vgg16(pretrained=True)
img = tl.vis.read_image('data/tiger.jpeg')
img = tl.prepro.imresize(img, (224, 224)).astype(tl.float32) / 255
output = vgg(img, is_train=False)